
1

Praveen Kundurthy, Rakshith Krishnappa

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda
• Agenda:

a) Introduction & Overview to oneAPI

b) Introduction to the Intel® DevCloud

c) Introduction to Jupyter notebooks used for training

d) Introduction to Data Parallel C++

e) Overview of SYCL Fundamental classes

f) Device offloading and Custom Device Selector

g) Host accessor and Synchronization

• Hands On: Introduction to DPC++ - Simple

• Hands On: Vector-Add Coding Exercise

• Hands On: Complex Multiplication

2

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Learning Objectives

Explain how oneAPI can solve the challenges of programming in a
heterogeneous world

Use oneAPI solutions to enable your workflows

Experiment with oneAPI tools and libraries on the Intel® DevCloud

Understand the Data Parallel C++ (DPC++) language and programming model

Explain the SYCL fundamental classes

Use device selection to offload kernel workloads

Understand various ways to synchronize data between host and device

Build a sample DPC++ application through hands-on lab exercises

3

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

oneAPI
Single Programming Model
to Deliver Cross-Architecture Performance
Industry initiative, Intel® oneAPI Beta Products

All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

XPUs

Programming Challenges
for Multiple Architectures

Growth in specialized workloads

No common programming language or APIs

Inconsistent tool support across platforms

Each platform requires unique software investment

Diverse set of data-centric hardware required

Middleware / Frameworks

Application Workloads Need Diverse Hardware

Language & Libraries

Scalar Vector Matrix Spatial

5

CPU GPU FPGA Other accel.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

6

introducing
oneapi
Unified programming model to simplify
development across diverse architectures

Unified and simplified language and libraries for
expressing parallelism

Uncompromised native high-level language performance

Based on industry standards and open specifications

Interoperable with existing HPC programming models

Industry Intel

Initiative Product

Middleware / Frameworks

Application Workloads Need Diverse Hardware

Scalar Vector Matrix Spatial

XPUs

CPU GPU FPGA Other accel.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A standards based cross-architecture language, DPC++,
based on C++ and SYCL

Powerful APIs designed for acceleration of key
domain-specific functions

Low-level hardware interface to provide a hardware
abstraction layer to vendors

Open standard to promote community and
industry support

Enables code reuse across architectures and vendors

ONEAPI industry initiative
alternative to single-vendor solution

7

Some capabilities may differ per architecture and custom-tuning will still be required.

API-Based Programming

Libraries

Direct Programming

Data Parallel C++

oneAPI Industry Specification

Low-Level Hardware Interface

XPUs

Middleware / Frameworks

Application Workloads

Math Threading
DPC++
Library

Analytics/
ML DNN ML Comm

Video
Processing

Visit oneapi.com for more details

CPU GPU FPGA Other accel.

oneapi.com

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® ONEAPI toolkits(beta)

Toolkits Tailored to Your Needs: Native Code | Data Scientists & AI | Systems
Native Code Developers, start with the Intel® oneAPI Base Toolkit.

Intel® oneAPI Base Toolkit

A core set of high-performance tools for building Data Parallel C++ applications and oneAPI library based applications

Learn More

Intel® oneAPI Rendering
Toolkit

Create high-performance, high-
fidelity visualization applications

Learn More

Intel® oneAPI HPC Toolkit

Deliver fast C++, Fortran, & OpenMP*
applications that scale

Learn More

Intel® oneAPI IoT Toolkit

Building high-performing, efficient,
reliable solutions that run at the
network’s edge

Learn More

Intel® oneAPI DL Framework
Developer Toolkit

Build deep learning frameworks or
customize existing ones so
applications run faster

Learn More

Learn More

Intel® System Bring-Up Toolkit

Debug & tune systems for power &
performance

Intel® AI Analytics Toolkit

Accelerate E2E machine learning &
data science pipelines with optimized
DL frameworks & high-performing
Python libraries.

Learn More Learn More

Intel® Distribution of OpenVINO™
Toolkit

Deploy high performance inference &
applications from edge to cloud
(production-level tool)

Toolkits Powered by oneAPI: Data Scientists & AI Toolkits Systems Toolkit

8

Add-on Domain-specific Toolkits for Specialized Workloads

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® oneAPI Base Toolkit (beta)

Core set of frequently used tools and libraries for
developing high-performance applications across
diverse architectures—CPU, GPU, FPGA.

Who Uses It?

A broad range of developers across industries

Add-on toolkit users since this is the base for all toolkits

Top Features/Benefits

Data Parallel C++ compiler, library, and analysis tools

DPC++ Compatibility tool helps migrate existing code written in
CUDA*

Python distribution includes accelerated scikit-learn, NumPy,
SciPy libraries

Optimized performance libraries for threading, math, data
analytics, deep learning, and video/image/signal processing

9

API-Based ProgrammingDirect Programming
Intel® oneAPI DPC++

Compiler

Intel® DPC++
Compatibility Tool

Intel® Distribution
for Python*

Analysis & debug Tools
Intel® oneAPI

DPC++ Library

Intel® oneAPI
Math Kernel Library

Intel® oneAPI
Data Analytics

Library

Intel® oneAPI
Threading Building

Blocks

Intel® oneAPI Video
Processing Library

Intel®
VTune™ Profiler

Intel® Advisor

GDB*

Intel® oneAPI Base Toolkit

Intel® oneAPI
Collective Comms.

Library

Intel® oneAPI
Deep Neural Network

Library

Intel® Integrated
Performance Primitives

Intel® FPGA Add-on
for oneAPI Base

Toolkit

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® oneAPI hpc Toolkit(beta)

A toolkit that makes it easier to build,
analyze, optimize & scale HPC applications
for Intel® Xeon® Scalable, Intel® Core™
processors & Intel® Accelerators.

Who Uses It?
C/C++, Fortran, OpenMP & MPI application
developers

Top Features/Benefits
Optimized compilers & performance libraries for
Intel® architectures

Powerful analysis tools to identify optimization
opportunities for threading, memory & offloading

Standards-driven to scale forward & preserve
development investment

10

Intel oneAPI Tools for HPC

Intel® oneAPI Base Toolkit

API-Based ProgrammingDirect Programming Analysis Tools

Intel® oneAPI
DPC++ Compiler

Intel® DPC++
Compatibility Tool

Intel® Distribution
for Python*

Intel® FPGA Add-on for
oneAPI Base Toolkit

Intel® VTune™ Profiler

Intel® Advisor

GDB*

Intel® C++ Compiler
with OpenMP*

Intel® Fortran Compiler
with OpenMP*

Intel® oneAPI
DPC++ Library

Intel® oneAPI
Math Kernel Library

Intel® oneAPI
Data Analytics Library

Intel® oneAPI Threading
Building Blocks

Intel® oneAPI Video
Processing Library

Intel® oneAPI Collective
Communications

Library

Intel® oneAPI Deep
Neural Network Library

Intel® Integrated
Performance Primitives

Intel® MPI Library Intel® Inspector

Intel® Trace
Analyzer & Collector

Intel® Cluster Checker

Intel® oneAPI HPC Toolkit +

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® DPC++
Compatibility Tool

Optimized
Code

HPC oneAPI Single Node Workflow
I want to Accelerate using direct programming on A GPU…

11

Kernel Style:

Data
Parallel C++

Directive Style:

OpenMP

Intel® VTune™
Profiler

Existing CUDA code
New or
Existing

C++ Code

Existing
Fortran or C

Existing
OpenCL™

Applications

Existing
OpenMP

Data
Parallel C++

Intel® SDK for
OpenCL™

Applications

Intel® Advisor – vectorization, memory & offload design advice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

12

Introduce Data Parallel C++, the code structure,
and key concepts to get you writing code quickly!

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Parallelism, productivity and performance for CPUs and Accelerators
Allows code reuse across hardware targets, while permitting custom tuning for a
specific accelerator

Open, cross-industry alternative to single architecture proprietary language

Based on ISO C++ and Khronos SYCL
Delivers C++ productivity benefits, using common and familiar C and C++ constructs

Incorporates SYCL from the Khronos Group to support data parallelism and
heterogeneous programming

Community Project to drive language enhancements
Extensions to simplify data parallel programming

Open and cooperative development for continued evolution

Data parallel C++
Standards-based, Cross-architecture Language

13

ISO C++

Khronos SYCL

Direct Programming:
Data Parallel C++

Community Extensions

The open source and Intel beta DPC++ compiler currently supports hardware
including Intel CPUs, GPUs, and FPGAs.
Codeplay announced a DPC++ compiler that targets Nvidia GPUs.

Get functional quickly. Then analyze and tune.

https://www.codeplay.com/portal/02-03-20-codeplay-contribution-to-dpcpp-brings-sycl-support-for-nvidia-gpus

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

14

Data Parallel C++

= C++ and SYCL* standard and extensions

Based on modern C++

▪ C++ productivity benefits and familiar constructs

Standards-based, cross-architecture

▪ Incorporates the SYCL standard for data parallelism and heterogeneous
programming

WHAT IS DATA PARALLEL C++?

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

15

Enhance Productivity

• Simple things should be simple to express

• Reduce verbosity and programmer burden

Enhance Performance

• Give programmers control over program execution

• Enable hardware-specific features

DPC++: Fast-moving open collaboration feeding into the SYCL* standard

• Open source implementation with goal of upstream LLVM

• DPC++ extensions aim to become core SYCL*, or Khronos* extensions

DPC++ Extends SYCL 1.2.1

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Requirements for Heterogeneous Computing
1. What are the entities in the compute system?

2. How are control and execution handled?

3. How is data structured and communicated?

4. What is executed on the device(s)?

16

Heterogeneous System

Platform Model

Host, Device

Execution Model

Queue, Accessor

Memory Model

Buffer, Unified Shared Memory

Kernel Model

ND-range, work-item

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A Complete DPC++ Program

#include <CL/sycl.hpp>

constexpr int N=16;

using namespace sycl;

int main() {

queue q;

int *data = malloc_shared<int>(N, q);

q.parallel_for(range<1>(N), [=](id<1> i) {

data[i] = i;

}).wait();

for (int i=0; i<N; i++) std::cout << data[i] << "\n";

free(data, q);

return 0;

}

Single source

• Host code and heterogeneous
accelerator kernels can be
mixed in same source files

Familiar C++

• Library constructs add
functionality, such as:

Host
code

Accelerator
device code

Host
code

Construct Purpose

queue Work targeting

malloc_shared Data management

parallel_for Parallelism

17

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Analyze Data Parallel C++ (DPC++)
See the lines of DPC++ that consume the most time

Tune for CPU, GPU & FPGA
Optimize for any supported hardware accelerator

Optimize Offload
Tune OpenMP* offload performance

Wide Range of Performance Profiles
CPU, GPU, FPGA, threading, memory, cache, storage…

Supports Popular Languages
DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix

Intel® VTune™ Profiler (beta)
DPC++ Profiling-Tune for CPU, GPU & FPGA

18

There will still be a need to tune for each architecture.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Offload Advisor
Estimate performance of offloading to an accelerator

Roofline Analysis
Optimize CPU/GPU code for memory and compute

Vectorization Advisor
Add and optimize vectorization

Threading Advisor
Add effective threading to unthreaded applications

Flow Graph Analyzer
Create and analyze efficient flow graphs

Intel® Advisor (beta)

Design assistant — Design for Modern Hardware

19

There will still be a need to tune for each architecture.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Setup Intel® DevCloud and Jupyter Environment

20

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® devcloud for oneAPI
Overview

21

There will still be a need to tune for each architecture.

• A development sandbox to develop,
test and run workloads across a range
of Intel CPUs, GPUs, and FPGAs using
Intel® oneAPI beta software

• A fast way to start coding

• Try the oneAPI toolkits, compilers,
performance libraries, and tools

• Get 120 days of free access to the
latest Intel® hardware and oneAPI
software

• No downloads; No hardware
acquisition; No installation

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® DevCloud
access

22

There will still be a need to tune for each architecture.

• Remote access for professors and students to next-generation deep learning and machine learning development
environments.

• Developers may use the cluster for research, coursework, labs, tutorials, and projects

• Hardware Available:

• Includes a state-of-the-art server cluster powered by the Intel® Xeon® Scalable processor family, Intel®
optimized frameworks, and other tools and libraries. Each processor has up to 56 cores with two-way hyper-
threading and up to 192 GB of on-platform DDR4 RAM.

• Intel® Arria® 10 FPGAs

• Intel® Xeon® processors with Intel Graphics Technology

• Each developer is provided 220 GB of file storage during the access period.

• Each user’s home/user directory is not visible to others. Users’ home directories on the cluster are deleted after the
access period.

• Request access by visiting http://software.intel.com/devcloud/oneapi

http://software.intel.com/devcloud/oneapi

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Steps
• Sign up for a DevCloud for

oneAPI account here:
https://intelsoftwaresites.secure
.force.com/devcloud/oneapi

• Open up a Jupyter lab notebook

• Common recipes on the
DevCloud

https://intelsoftwaresites.secure.force.com/devcloud/oneapi

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Launch Jupyter and select Terminal

24

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Commands to input in terminal

Please execute the following commands in the Jupyter Terminal window

/data/oneapi_workshop/get_jupyter_notebooks.sh

This command copies workshop into the user directory

25

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Select Welcome.ipynb

26

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® oneAPI Academic Workshop
DPC++essentials

28

DPC++ Essentials Course Curriculum provides 20 hours of training
and exercises using Jupyter Notebooks integrated with Intel® DevCloud

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

qsub
• qsub can be used to submit jobs to the DevCloud job queue

• Jobs run asynchronously and report status upon completion

• The traditional way to execute qsub is to pass it a script:

“qsub <script.sh>”

• qsub requires absolute paths, e.g. /bin/ls

• qsub –w $PWD – Runs in current folder

• Output file is <scriptname>.o<jobid>

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Qstat/qdel
• qstat displays running jobs

• qdel <jobid> deletes pending jobs

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Interactive shells
• Getting an interactive shell

• qsub –I

• Requesting an iGPU/FPGA node

• qsub -I -l nodes=1:gpu:ppn=2

• clinfo – lists iGPU info

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Hands on exercise – Simple

• Objectives for the hands-on:

• Presentation of the DPC++ training environment via Jupyter notebooks

• Compile and Run Simple DPC++ code

32

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Transition to Jupyter Notebook - SIMPLE

Welcome.ipynb

Select link Introduction to oneAPI and DPC++

33

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Transition to Jupyter Notebook – Vector Add

Return to Welcome.ipynb

Select link Introduction to DPC++

34

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SYCL Classes

35

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

DEVICE
• The device class represents the capabilities of the accelerators in a oneAPI

system.

• The device class contains member functions for querying information about
the device, which is useful for DPC++ programs where multiple devices are
created.

• The function get_info gives information about the device:

• Name, vendor, and version of the device

• The local and global work item IDs

• Width for built in types, clock frequency, cache width and sizes, online or offline

queue q;

device my_device = q.get_device();

std::cout << "Device: " << my_device.get_info<info::device::name>() << std::endl;

36

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

DEVICE SELECTOR

• The device_selector class enables the runtime selection of a particular
device to execute kernels based upon user-provided heuristics.

• The following code sample shows use of the standard device selectors
(default_selector, cpu_selector, gpu_selector…) and a derived
device_selector

default_selector selector;

// host_selector selector;

// cpu_selector selector;

// gpu_selector selector;

queue q(selector);

std::cout << "Device: " << q.get_device().get_info<info::device::name>() << std::endl;

37

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

queue

• A queue submits command groups to be executed by the SYCL runtime

• Queue is a mechanism where work is submitted to a device.

• A Queue map to one device and multiple queues can be mapped to the
same device.

queue q;

q.submit([&](handler& h) {

// COMMAND GROUP CODE

});

38

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Work is submitted to queues

• Each queue is associated with exactly one device (e.g. a specific GPU or FPGA)

• You can:

• Decide which device a queue is associated with (if you want)

• Have as many queues as desired for dispatching work in heterogeneous systems

Choosing where device kernels run

Create queue targeting any device: queue();

Create queue targeting a pre-
configured classes of devices:

queue(cpu_selector{});
queue(gpu_selector{});
queue(intel::fpga_selector{});
queue(accelerator_selector{});
queue(host_selector{});

Create queue targeting specific
device (custom criteria):

class custom_selector : public device_selector {
int operator()(…… // Any logic you want!

…
queue(custom_selector{});

Queue_A

Queue_B

Queue_C

GPU

FPGA

Always
available

39

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

kernel
• The kernel class encapsulates methods and data for executing code on the

device when a command group is instantiated

• Kernel object is not explicitly constructed by the user

• Kernel object is constructed when a kernel dispatch function, such as
parallel_for, is called

q.submit([&](handler& h) {

h.parallel_for(range<1>(N), [=](id<1> i) {

A[i] = B[i] + C[i]);

});

});

40

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Buffers: Encapsulate data in a
SYCL application

• Across both devices and host!

Accessors: Mechanism to
access buffer data

• Create data dependencies in the
SYCL graph that order kernel
executions

The Buffer Model

int main() {
auto R = range<1>{ num };
buffer<int> A{ R }, B{ R };
queue Q;

Q.submit([&](handler& h) {
accessor out(A, h, write_only);

h.parallel_for(R, [=](auto idx) {
out[idx] = idx[0]; }); });

Q.submit([&](handler& h) {
accessor out(A, h, write_only);
h.parallel_for(R, [=](auto idx) {
out[idx] = idx[0]; }); });

…

A

A
B

A

BKernel
1

Kernel
3

Kernel
2

Kernel
4

Buffer

Accessor to
buffer

41

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

DPC++ code anatomy

• oneAPI programs require the include of cl/sycl.hpp.

• It is recommended to employ the namespace statement to save typing
repeated references into the sycl namespace

#include <CL/sycl.hpp>

using namespace sycl;

42

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

DPC++ code anatomy

43

Done!
The results are copied to vector `c` at `buf_c` buffer destruction

Step 1: create a device queue
(developer can specify a device type via
device selector or use default selector)

Step 2: create buffers
(represent both host and
device memory)

Step 3: submit a command for
(asynchronous) execution

Step 4: create buffer accessors
to access buffer data on the
device

Step 5: send a kernel (lambda) for
execution

Step 6: write a kernel

Kernel invocations are
executed in parallel

Kernel is invoked for each
element of the range

Kernel invocation has
access to the invocation id

void dpcpp_code(int* a, int* b, int* c) {
// Setting up a DPC++ device queue
queue q;
// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));
//Submit Command group function object to the queue
q.submit([&](handler &h){
//Create device accessors to buffers allocated in global memory
accessor A(buf_a, h, read_only);
accessor B(buf_b, h, read_only);
accessor C(buf_c, h, write_only);
//Specify the device kernel body as a lambda function
h.parallel_for(range<1>(N), [=](auto i){

C[i] = A[i] + B[i];
});

});
}

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

CUSTOM DEVICE SELECTOR
The following code shows derived device_selector that employs a device
selector heuristic. The selected device prioritizes a GPU device because the
integer rating returned is higher than for CPU or other accelerator.

#include <CL/sycl.hpp>
using namespace cl::sycl;
class my_device_selector : public device_selector {
public:

int operator()(const device& dev) const override {
int rating = 0;
if (dev.is_gpu() & (dev.get_info<info::device::name>().find(“vendor") != std::string::npos))

rating = 3;
else if (dev.is_gpu()) rating = 2;
else if (dev.is_cpu()) rating = 1;
return rating;
};

};
int main() {

my_device_selector selector;
queue q(selector);
std::cout << "Device: "
<< q.get_device().get_info<info::device::name>() << std::endl;
return 0;

}

44

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Think of a SYCL application as two parts:

1. Host code

2. The graph of kernel executions

These execute independently, except at synchronizing operations

• The host code submits work to build the graph (and can do compute work itself)

• The graph of kernel executions and data movements executes asynchronously from host
code, managed by the SYCL runtime

Asynchronous Execution

45

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#include <CL/sycl.hpp>
#include <iostream>
constexpr int num=16;
using namespace cl::sycl;

int main() {
auto R = range<1>{ num };
buffer<int> A{ R };

queue{}.submit([&](handler& h) {
accessor out(A, h, write_only);
h.parallel_for(R, [=](id<1> idx) {
out[idx] = idx[0]; }); });

host_accessor result(A, read_only);
for (int i=0; i<num; ++i)

std::cout << result[i] << "\n";

return 0;
}

Host code
execution

Enqueues
kernel to
graph, and
keeps
going

Kernel

A

A

Graph executes
asynchronously
to host program

Host Graph

Asynchronous Execution (cont’d)

46

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Automatic data and control
dependence resolution!

Graph of Kernel Executions

Program
completion

A

A

B

A

B

int main() {
auto R = range<1>{ num };
buffer<int> A{ R }, B{ R };
queue Q;

Q.submit([&](handler& h) {
accessor out(A, h, write_only);
h.parallel_for(R, [=](id<1> idx) {

out[idx] = idx[0]; }); });

Q.submit([&](handler& h) {
accessor out(A, h, write_only);
h.parallel_for(R, [=](id<1> idx) {

out[idx] = idx[0]; }); });

Q.submit([&](handler& h) {
accessor out(B, h, write_only);
h.parallel_for(R, [=](id<1> idx) {

out[idx] = idx[0]; }); });

Q.submit([&](handler& h) {
accessor in(A, h, read_only);
accessor inout(B, h);

h.parallel_for(R, [=](id<1> idx) {
inout[idx] *= in[idx]; }); });

}

Kernel 1

Kernel 3

Kernel 2

Kernel 4

= data
dependence

Kernel 1

Kernel 2

Kernel 3

Kernel 4
47

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Synchronization – Host accessor

48

Buffer takes ownership of the

data stored in vector.

Creating host accessor is a

blocking call and will only return

after all enqueued DPC++ kernels

that modify the same buffer in

any queue completes execution

and the data is available to the

host via this host accessor.

int main() {
constexpr int N = 100;
auto R = range<1>(N);
std::vector<double> v(N, 10);
queue q;

buffer buf(v)
q.submit([&](handler& h) {
accessor a(buf, h)
h.parallel_for(R, [=](auto i) {

a[i] -= 2;
});

});

host_accessor b(buf, read_only);
for (int i = 0; i < N; i++)

std::cout << b[i] << "\n";
return 0;

}

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Synchronization – Buffer Destruction – a better way

49

Buffer creation happens within

a separate function scope.

When execution advances

beyond this function scope,

buffer destructor is invoked

which relinquishes the

ownership of data and copies

back the data to the host

memory.

#include <CL/sycl.hpp>
constexpr int N=100;
using namespace cl::sycl;

void dpcpp_code(std::vector<double> &v, queue &q){
auto R = range<1>(N);
buffer buf(v);
q.submit([&](handler& h) {
accessor a(buf, h);
h.parallel_for(R, [=](auto i) {

a[i] -= 2;
});

});
}

int main() {
std::vector<double> v(N, 10);
queue q;
dpcpp_code(v,q);
for (int i = 0; i < N; i++)

std::cout << v[i] << "\n";
return 0;

}

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

HANDS-ON Lab – Complex number multiplication
• In this lab we provide with the source code that computes multiplication of

two complex numbers where Complex class is the definition of a custom
type that represents complex numbers

• In this example the student will learn how to create a custom device
selector and to target GPU or CPU of a specific vendor. The student will
also learn how to pass in a vector of custom Complex class objects in
parallel and needs to modify the source code to setup a write accessor
and call the Complex class member function as kernel to compute the
multiplication

50

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Transition to Jupyter Notebook – Complex number multiplication

Welcome.ipynb

Select link DPC++ Program Structure

51

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Recap
oneAPI solves the challenges of programming in a heterogeneous world

Take advantage of oneAPI solutions to enable your workflows

Use the Intel® DevCloud to test-drive oneAPI tools and libraries

Introduced to DPC++ language and programming model

Important Classes for DPC++ application

Device selection and offloading kernel workloads

DPC++ Buffers, Accessors, Command Group handler, lambda code as kernel

Hands on activities

• Vector-Increment/Vector-add exercise – demonstrate coding ease by modifying the
sample source code.

• Complex number multiplication

52

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Notices & Disclaimers
This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact
your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata
are available on request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS
IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S.
and other countries.

53

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

