(intel® |
exp’er!en_cde }

what's inside

ONEAPI ESSENTIALS WORKSHOP

Praveen Kundurthy, Rakshith Krishnappa

AGENDA

* Agenda:
a) Introduction & Overview to oneAPI
b) Introduction to the Intel® DevCloud
c) Introduction to Jupyter notebooks used for training
d) Introduction to Data Parallel C++
e) Overview of SYCL Fundamental classes
f) Device offloading and Custom Device Selector
g) Host accessor and Synchronization

* Hands On: Introduction to DPC++ - Simple
« Hands On: Vector-Add Coding Exercise
« Hands On: Complex Multiplication

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

LEARNING OBJECTIVES

Explain how oneAPI can solve the challenges of programming in a
heterogeneous world

Use oneAPI solutions to enable your workflows

Experiment with oneAPI tools and libraries on the Intel’ DevCloud
Understand the Data Parallel C++ (DPC++) language and programming model
Explain the SYCL fundamental classes

Use device selection to offload kernel workloads

Understand various ways to synchronize data between host and device

Build a sample DPC++ application through hands-on lab exercises

Copyright © 2019, Intel Corporation. All rights reserved ‘ inte‘ | 3

*Other names and brands may be claimed as the property of others.

Software

oneAPI

Single Programming Model

to Deliver Cross-Architecture Performance HPCE
Industry initiative, Intel® oneAPI Beta Products 2019;@,“,

Choice
Awards

Top 5 New Products
or Technologies
to Watch

Intel OneAPI

Awards Winner for 15 Years

A A A A A A A A AN AN

All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

PROGRAMMING CHALLENGES
FOR MULTIPLE ARCHITECTURES

Hardware

Growth in specialized workloads

No common programming language or APIs

Inconsistent tool support across platforms -
Language & Libraries

Each platform requires unique software investment

]

1LatnnR XPUS (RNENEY] innnnn

CPU GPU FPGA OTHER ACCEL.

1L
0o
|

Diverse set of data-centric hardware required

Copyright © 2019, Intel Corporation. All rights reserved. 1 intE|) | 5

*Other names and brands may be claimed as the property of others.

ON EAPI Application Workloads Need Diverse Hardware
i Il T

SCALAR VECTOR MATRIX SPATIAL

Middleware / Frameworks

Unified and simplified language and libraries for
expressing parallelism

Indust
Uncompromised native high-level language performance " .ry
Initiative
Based on industry standards and open specifications
XPUs
Interoperable with existing HPC programming models §§§§35§ HWW ?@ '
CPU GPU FPGA OTHERACCEL

Copyright © 2019, Intel Corporation. All rights reserved. { intE|) | 6

*Other names and brands may be claimed as the property of others.

ONEAPI INDUSTRY INITIATIVE
ALTERNATIVE TO SINGLE-VENDOR SOLUTION

oneAPI Industry Specification

A standards based cross-architecture language, DPC++,
based on C++ and SYCL Direct Programming API-Based Programming

Libraries
Powerful APIs designed for acceleration of key e

. C e . Math =~ Threading [ibrary
domain-specific functions Data Parallel C++

Anal\l/\{l'fics/ DNN ML Comm
Low-level hardware interface to provide a hardware prideo
abstraction layer to vendors

Open standard to promote community and PN e XPUs =t = am— -

industry support l: Gl e 0 iEE

Enables code reuse across architectures and vendors CPU GPU FPGA UTlliiEIIiKéEEL
Visit for more details

Some capabilities may differ per architecture and custom-tuning will still be required.

Copyright © 2019, Intel Corporation. All rights reserved. 1 intE|) | 7

*Other names and brands may be claimed as the property of others.

oneapi.com

TOOLKITSEET™

TOOLKITS TAILORED TO YOUR NEEDS: NATIVE CODE | DATA SCIENTISTS & Al | SYSTEMS

Native Code Developers, start with the Intel® oneAPI Base Toolkit.

Intel® oneAPI Base Toolkit

A core set of high-performance tools for building Data Parallel C++ applications and oneAPI library based applications

Learn More

Add-on Domain-specific Toolkits for Specialized Workloads

— O :

== Intel® oneAPI HPC Toolkit 2 Intel® oneAPI loT Toolkit Intel® oneAPI DL Framework E;

—*= s ® Developer Toolkit Toolkit

Deliver fast C++, Fortran, & OpenMP* Building high-performing, efficient, Build deep learning frameworks or Create high-performance, high-

applications that scale reliable solutions that run at the customize existing ones so fidelity visualization applications
network’s edge applications run faster

Intel® oneAPI Rendering

Learn More Learn More Learn More Learn More

Toolkits Powered by oneAPI: Data Scientists & Al Toolkits Systems Toolkit

Intel® Al Analytics Toolkit Intel® Distribution of OpenVINO™

Accelerate E2E machine learning & Toolkit

data science pipelines with optimized Deploy high performance inference &
DL frameworks & high-performing applications from edge to cloud
Python libraries. (production-level tool)

Learn More

Intel® System Bring-Up Toolkit

Debug & tune systems for power &
performance

Learn More Learn More

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5-
—_—
(Q

BASE TOOLKIT €T

Intel® oneAPI Base Toolkit
Core set of frequently used tools and libraries for

developing high-performance applications across DIRECT PROGRAMMING API-BASED PROGRAMMING | ANALYSIS & DEBUG TOOLS
diverse architectures—CPU, GPU, FPGA. Intel® oneAP| DPC++ Intel® oneAP! Intel®
Compiler DPC++ Library VTune™ Profiler
Intel® DPC++ Intel® oneAPI :
et : Intel® Advisor
A broad range of developers across industries Compatibility Tool Math Kernel Library
Add-on toolkit users since this is the base for all toolkits Intel® Distribution Dr;ti ﬂgfyis GDB*
for Python [
Intel® FPGA Add-on Intel® oneAPI
for oneAPI Base Threading Building
Data Parallel C++ compiler, library, and analysis tools ool Slocks
e : - : , Intel® oneAPI Video
DPC++ Compatibility tool helps migrate existing code written in Processing Library
CUDA*
Intel® oneAPI
Python distribution includes accelerated scikit-learn, NumPy, Collective Commes.

SciPy libraries Library

Optimized performance libraries for threading, math, data Dee:)nlEletelugl‘?\lAéI:\lfvork

analytics, deep learning, and video/image/signal processing Library

Intel® Integrated
Performance Primitives

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

A toolkit that makes it easier to build,
analyze, optimize & scale HPC applications
for Intel® Xeon® Scalable, Intel® Core™
processors & Intel® Accelerators.

C/C++, Fortran, OpenMP & MPI application
developers

Optimized compilers & performance libraries for
Intel® architectures

Powerful analysis tools to identify optimization
opportunities for threading, memory & offloading

Standards-driven to scale forward & preserve
development investment

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

HPC TOOLKITEE™

DIRECT PROGRAMMING

Intel® C++ Compiler
with OpenMP*

Intel® Fortran Compiler
with OpenMP*

Intel® oneAPI

DPC++ Compiler

Intel® DPC++
Compatibility Tool

Intel® Distribution
for Python*

Intel® FPGA Add-on for
oneAPI Base Toolkit

B Intel® oneAPI HPC Toolkit +

Intel® oneAPI Base Toolkit

Intel oneAPI Tools for HPC

API-BASED PROGRAMMING

Intel® MPI Library

Intel® oneAPI
DPC++ Library

Intel® oneAPI
Math Kernel Library

Intel® oneAPI
Data Analytics Library

Intel® oneAPI Threading
Building Blocks

Intel® oneAPI Video
Processing Library

Intel® oneAPI Collective
Communications
Library

Intel® oneAPI Deep
Neural Network Library

Intel® Integrated
Performance Primitives

ANALYSIS TOOLS

Intel® Inspector

Intel® Trace
Analyzer & Collector

Intel® Cluster Checker

Intel® VTune™ Profiler

Intel® Advisor

GDB*

HPC ONEAPI SINGLE NODE WORKFLOW
| WANT TO ACCELERATE USING DIRECT PROGRAMMING ON A GPU...

New or = - Existin
Existing CUDA code Existing Existing Existing OpenCLgT"
C++ Code OpenMP Fortran or C Applications

'
Intel® DPC++
Compatibility Tool

Intel® Advisor — vectorization, memory & offload design advice

Kernel Style: P y——
" Directive Style: nte or

Parallel C++ Ll Applications ~ Parallel C++

g Intel® VTune™ Optimized
! Profiler Code

Copyright © 2019, Intel Corporation. All rights reserved { intE|) | 11

*Other names and brands may be claimed as the property of others.

Introduce Data Parallel C++, the code structure,
and key concepts to get you writing code quickly!

Copyright © 2019, Intel Corporation. All rights reserved { inte‘) | 12

*Other names and brands may be claimed as the property of others.

Get functional quickly. Then analyze and tune.
STANDARDS-BASED, CROSS-ARCHITECTURE LANGUAGE

Direct Programming:

Allows code reuse across hardware targets, while permitting custom tuning for a Data Parallel C++

specific accelerator
Open, cross-industry alternative to single architecture proprietary language

Community Extensions

Delivers C++ productivity benefits, using common and familiar C and C++ constructs Khronos SYCL

Incorporates SYCL from the Khronos Group to support data parallelism and
heterogeneous programming

Extensions to simplify data parallel programming
Open and cooperative development for continued evolution

The open source and Intel beta DPC++ compiler currently supports hardware
including Intel CPUs, GPUs, and FPGAs.
Codeplay announced a

Copyright © 2019, Intel Corporation. All rights reserved. intel) 13
*Other names and brands may be claimed as the property of others.

https://www.codeplay.com/portal/02-03-20-codeplay-contribution-to-dpcpp-brings-sycl-support-for-nvidia-gpus

WHAT IS DATA PARALLEL G++?

Data Parallel C++

= C++ and SYCL* standard and extensions

Based on modern C++

» C++ productivity benefits and familiar constructs

Standards-based, cross-architecture

* Incorporates the SYCL standard for data parallelism and heterogeneous
programming

Copyright © 2019, Intel Corporation. All rights reserved { inte‘) | 14

*Other names and brands may be claimed as the property of others.

DPC++ EXTENDS SYCL1.2.1

Enhance Productivity

* Simple things should be simple to express

* Reduce verbosity and programmer burden

Enhance Performance

* Give programmers control over program execution

« Enable hardware-specific features

DPC++: Fast-moving open collaboration feeding into the SYCL* standard

* Open source implementation with goal of upstream LLVM
« DPC++ extensions aim to become core SYCL*, or Khronos* extensions

Copyright © 2019, Intel Corporation. All rights reserved. { intE|) | 15

*Other names and brands may be claimed as the property of others.

REQUIREMENTS FOR HETEROGENEQUS COMPUTING

1. What are the entities in the compute system?
Platform Model

2. How are control and execution handled?
Execution Model

il

3. How is data structured and communicated?
Memory Model

4. What is executed on the device(s)?
Heterogeneous System Kernel Model

Copyright G) 2019, Intel Corporation. '\ rights reserved. — (intell, | 16

*Other names and brands may be claimed as the property of others.

A COMPLETE DPC++ PROGRAM

Sing[e source #include <CL/sycl.hpp>

constexpr int N=16;
Host code and heterogeneous

using namespace sycl;
accelerator kernels can be g P ycls

mixed in same source files int main() {
queue q;
Familiar C++ int *data = malloc_shared<int>(N, q);
_ q.parallel for(range<1>(N), [=](id<1> i) {
Library constructs add Accelerator datal .
functionality, such as: devicy atali] = 1;
}).wait();
for (int i=0; i<N; i++) std::cout << data[i] << "\n";
Construct Purpose

} f data, ;
queue Work targeting ree(data,)

malloc_shared Data management return @;

parallel for Parallelism

Copyright © 2019, Intel Corporation. All rights reserved. { intE|) | 17

*Other names and brands may be claimed as the property of others.

INTEL® VTUNE" PROFILERE™

DPC++ PROFILING— TUNE FOR CPU, GPU & FPGA

Analyze Data Parallel C++ (DPC++)

See the lines of DPC++ that consume the most time
Tune for CPU, GPU & FPGA
Optimize for any supported hardware accelerator

Optimize Offload

Tune OpenMP* offload performance

Wide Range of Performance Profiles

Active:

I g:]le';'hn-eads!s e — \
CPU, GPU, FPGA, threading, memory, cache, storage... L |/ T ma
Supports Popular Languages | I—

DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix

Utilization: 24 5%

There will still be a need to tune for each architecture.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DESIGN ASSISTANT — DESIGN FOR MODERN HARDWARE

Original
Host (CPU) Host (CPU) Host
Estimate performance of offloading to an accelerator
Offloaded Data transfer costs
HOSt {Accelerator) {Accelerator) . HOSt I an d ov erh ead

Time

A 4

Optimize CPU/GPU code for memory and compute
1 v| ¥ |'Y Default FLOAT -~ 1* No Results to Compare ~
Add and optimize vectorization

Add effective threading to unthreaded applications

Create and analyze efficient flow graphs

0.033 0.54
D Physical Cores: 4 ¥ App Threads: 1 ¥ SelfElapsed Time: 17.079s Total Time: 17.079 s

There will still be a need to tune for each architecture.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Setup Intel’ DevCloud and Jupyter Environment

Copyright © 2019, Intel Corporation. All rights reserved. { intE|) | 20

*Other names and brands may be claimed as the property of others.

HOW IT WORKS

Storage
Server
UVERVIEW |i| Connect to the
Login Node —] Jsob
Queue

Download Linux*

og Access Key (D.

* A development sandbox to develop, |
test and run workloads across a range — R ppeons
of Intel CPUs, GPUs, and FPGAs using :
Intel® oneAPI beta software

» A fast way to start coding

: : 5 INTELDEVELOUD
* Try the oneAPI toolkits, compilers, o ———
= c et 10 Know Intel one ow
pe rfo rmance llbrarles’ and tools No hardware acquisitions, system configurations, or software installations.

* Get 120 days of free access to the
latest Intel® hardware and oneAPI
software

 No downloads; No hardware
acquisition; No installation

[E—1
oneAPI

What is the
Intel® DevCloud? |

There will still be a need to tune for each architecture.

Copyright © 2019, Intel Corporation. All rights reserved. { intE|) | 21

*Other names and brands may be claimed as the property of others.

ACCESS

Remote access for professors and students to next-generation deep learning and machine learning development
environments.

* Developers may use the cluster for research, coursework, labs, tutorials, and projects

Hardware Available:

* Includes a state-of-the-art server cluster powered by the Intel® Xeon® Scalable processor family, Intel®
optimized frameworks, and other tools and libraries. Each processor has up to 56 cores with two-way hyper-
threading and up to 192 GB of on-platform DDR4 RAM.

* Intel® Arria® 10 FPGAs
* Intel® Xeon® processors with Intel Graphics Technology
* Each developer is provided 220 GB of file storage during the access period.

« Each user's home/user directory is not visible to others. Users’ home directories on the cluster are deleted after the
access period.

* Request access by visiting

There will still be a need to tune for each architecture.

Copyright © 2019, Intel Corporation. All rights reserved. { intE|) | 22

*Other names and brands may be claimed as the property of others.

http://software.intel.com/devcloud/oneapi

STEPS

 Sign up for a DevCloud for —y L S0 ' oyt

oneAPl account here: Get to Know:Intél SneAPE™ Now -

No hardware acquisitions, system configurations,or-software installations. '\)’

-
=

A Fast Way to Start Coding

- O p e n u p a J u pyte r la b n Ote b O O k Are you a forward-thinking developer interested in the SRS

next generation of data-centric computing innovation? Already have access? Sign in.

You've come to the right place. Required Fields(")

« C ' th
O m m O n re C I p e S O n e The Intel DevCloud is a development sandbox to learn
about and program oneAPI cross-architecture
D eVC lo u d applications.

Sign up now for full access to the latest Intel CPUs, Last Name *
GPUs, and FPGAs, Intel oneAPI Toolkits, and the new
programming language, Data Parallel C++ (DPC++).

First Name *

Email Address *
Access is free for 120 days with the possibility of an

extension.

Country / Region *

What is the Intel® DevCloud? < Share
- Select -
The Intel® DevCloud is a cluster compo...

oneAPl * Company or University *
f’"‘!"‘

_ b y
What is the ¥

o : S' Which hardware and accelerator architecture are you
Intel® DevCloud? “ developing for? (Select all that apply) *

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://intelsoftwaresites.secure.force.com/devcloud/oneapi

LAUNCH JUPYTER AND SELECT TERMINAL

File Edit Wiew Run Kernel Tabs Settings Help

+ [+} * & 4 Launcher
-/
Name Last Modified
B work 9 minutes ago Notebook

B tmp 34 minutes ago
| intel 2 months ago
Welcome.ipynb 22 days ago ' ' "

Tensorflow 1.15 Python 3.7 PyTorch 1.4.0 (Al
(Al kit) (Intel® oneAFI) kit)

Console

A A

Tensorflow 1.15 Python 3.7
(Al kit) (Intel® oneAPl)

Other
M =

Terminal xt Fi Markdown File Show Contextual
Help

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

COMMANDS TO INPUT IN TERMINAL

Please execute the following commands in the Jupyter Terminal window

/data/oneapi_workshop/get_jupyter notebooks.sh

This command copies workshop into the user directory

B u30109@s001-n004: ~ %

u3e109@senl-need:~$ /data/oneapl workshop/get jupyter notebooks.sh

Copyright © 2019, Intel Corporation. All rights reserved { inte‘) | 25

*Other names and brands may be claimed as the property of others.

SELECT WELCOME.IPYNB

Welcome.ipynb
BB / oneAPI_Essentials / B + XOM » m C Markdown v Python 3.7 (Intel® oneAPI)

Name - Last Modified
B 00 Introduction_to Ju... 2 months ago
B 01 _oneAPl Intro 2 months ago
Bm 02_DPCPP_Program_St... 2 months ago
B 03 _DPCPP_Unified_Sha... 2 months ago
B 04 DPCPP_Sub_Groups 2 months ago
BB 05_Intel_Advisor 2 months ago

oneAPI Essentials Modules

The concepts build on top of each other introducing and reinforcing the concepts of Data Parallel C++.

Module 0 - Introduction to Jupyter Notebook (Optional)

®8 06_Intel VTune_Profiler 2 months ago Optional This module explains how to use Jupyter Notebook which is used in all of the modules to edit and run coding excecises, this can be
@8 07_DPCPP_Library 2 months ago skipped if you are already familiar with using Jupyter Notebooks.
M README.md 3 months ago

Module 1 - Introduction to oneAPl and DPC++ 1

These initial hands-on exercises introduce you to DPC++ and the goal of aneAPl. In addition, it familiarizes you with the use of Jupyter notebooks as
a front-end for all training exercises. This workshop is designed to be used on the DevCloud and includes details on how to submit batch jobs on
DevCloud environment.

Module 2 - DPC++ Program Structure

These hands-on exercises present six basic DPC++ programs that illustrate the elements of a DPC+ + application. You can modify the source code in

some of the exercises to become more familiar with DPC++ programming concepts.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DPC++ESSENTIALS

Single Programming Model
to Deliver Cross-Architecture Performance
Wustry inltiative, Intet® oneAR! Beta Products

ACOMPLETE DPC++ PROGRAM

Single source

* Host code and heterogeneous
accelerator kernels can be
mixed in same source files

Familiar C++

+ Library constructs add
functionality, such as:

ND_RANGE KERNEL EXECUTION

Parallel execution with ND_RANGE Kernel helps to group work items that
maps to hardware resources. This helps to tune applications for performance.

Work-item Subgroup

queue Work targeting
o § Mww Prosdu
g o butfer Data
o) management
oy parallel_for Parallelism
INTEL VTUNE™ PROFILER: HARDWARE ANALYSIS EXTENDED
INTEL OFFLOAD ADVISOR (BETA) INTEL VTUNE” PROFILER:
* Starting from a baseline binary (runsing on CPUL Tummmm
* Helps defining which sections of the code should run on a given accelerator
* Provides performance projection on accelerators (currently gend and gent1)
) e r
P
C
(
vt
(inteD) | 5 (inteD |

All work-items ina

work-group are
scheduled on one

Compute Unit,
which has its o
local memory

All work-items in a sub-group
are mapped to vector
hardware

DPC++ Essentials Course Curriculum provides 20 hours of training

and exercises using Jupyter Notebooks integrated with Intel® DevCloud

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

aSUB

* gsub can be used to submit jobs to the DevCloud job queue
* Jobs run asynchronously and report status upon completion
* The traditional way to execute gsub is to pass it a script:

"gsub <script.sh>”

* gsub requires absolute paths, e.g. /bin/1s
e gsub —-w SPWD —Runs in current folder

* Qutputfileis <scriptname>.o<jobid>

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OSTAT/QDEL

* gstat displays running jobs

* gdel <jobid> deletes pending jobs

n424858=2001-n003: ~
Job ID

o91829 . . v—gsvr .« b—2ingleuser ud424E5S 00:01:068 B jupyterhub

291832 .. v—gesvr-1 STDIH udzZ4gs 0 R batch
581833 .v—gasvr-1 STDIH udz2485 0 R batch
091834 . v—gasvr-1 STDIH u4z4e85s 0 R batch
081E835.v—-gesvr-1 STDIH ud4z24g85 0 R batch
u424858=001-n003:~% gdel 591835

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTERACTIVE SHELLS

* Getting an interactive shell

* gsub -I

* Requesting an iGPU/FPGA node
* gsub -I -1 nodes=1l:gpu:ppn=2

e clinfo - listsiGPU info

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

HANDS ON EXERCISE - SIMPLE

* Objectives for the hands-on:
* Presentation of the DPC++ training environment via Jupyter notebooks

 Compile and Run Simple DPC++ code

Copyright © 2019 , Intel Corporation. All rights reserved 3 {intE|) | 32

ee

TRANSITION TO JUPYTER NOTEBOOK - SIMPLE

Welcome.ipynb

Select link Introduction to oneAPIl and DPC++

*Other names and brands may be claimed as the property of others.

TRANSITION TO JUPYTER NOTEBOOK - VECTOR ADD

Return to Welcome.ipynb

Select link Introduction to DPC++

*Other names and brands may be claimed as the property of others.

SYCL CLASSES

Copyright © 2019, Intel Corporation. All rights reserved. { intE|) | 35

*Other names and brands may be claimed as the property of others.

DEVICE

 The device class represents the capabilities of the accelerators in a oneAPI
system.

* The device class contains member functions for querying information about
the device, which is useful for DPC++ programs where multiple devices are
created.

* The function get_info gives information about the device:
 Name, vendor, and version of the device

* The local and global work item IDs

« Width for built in types, clock frequency, cache width and sizes, online or offline

queue q;

device my device =|qg.get device();

std::cout << "Device: " << my_device.get info<info::device::name>() << std::endl;

Copyright © 2019, Intel Corporation. All rights reserved. { intE|) | 36

*Other names and brands may be claimed as the property of others.

DEVICE SELECTOR

 The device_selector class enables the runtime selection of a particular
device to execute kernels based upon user-provided heuristics.

* The following code sample shows use of the standard device selectors
(default_selector, cpu_selector, gpu_selector...) and a derived
device _selector

default selector selector;
// host_selector selector;
// cpu_selector selector;

// gpu_selector selector;

queue q(selector);

std::cout << "Device: " << qg.get device().get_info<info::device::name>() << std::endl;

Copyright © 2019, Intel Corporation. All rights reserved. { intE|) | 37

*Other names and brands may be claimed as the property of others.

QUEUE

* A queue submits command groups to be executed by the SYCL runtime
 Queue is a mechanism where work is submitted to a device.

* A Queue map to one device and multiple queues can be mapped to the
same device.

queue q;

g.submit([&](handler& h) {

// COMMAND GROUP CODE
})s

Copyright © 2019, Intel Corporation. All rights reserved. intel) 38
*Other names and brands may be claimed as the property of others.

Queue A ma
CHOOSING WHERE DEVICE KERNELS RUN -~

_Queue C Jind

« Each queue is associated with exactly one device (e.g. a specific GPU or FPGA)

Work is submitted to queues

 You can:
» Decide which device a queue is associated with (if you want)

* Have as many queues as desired for dispatching work in heterogeneous systems

queue(cpu_selector{});
queue(gpu_selector{});

queue(intel:fpga_selector{}); Always
queue(accelerator_selecW available
queue(host_selector{});

class custom_selector : public device_selector {

Create queue targeting specific int operator()(...... // Any logic you want!
device (custom criteria):

Create queue targeting a pre-
configured classes of devices:

queue(custom_selector{});

Copyright © 2019, Intel Corporation. All rights reservea.
*Other names and brands may be claimed as the property of others.

RERNEL

* The kernel class encapsulates methods and data for executing code on the
device when a command group is instantiated

» Kernel object is not explicitly constructed by the user

Kernel object is constructed when a kernel dispatch function, such as
parallel for,is called

g.submit([&](handler& h) {

h.parallel for(range<1>(N), [=](id<1> i) |{
A[i] = B[i] + C[1])};

})s
})s

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

VA

THE BUFFER MODEL D o

VA 3
v/
A
Buffers: Encapsulate data in a int main() {
_ _ auto R = range<1>{ num }; Buffer
SYCL application buffercint> A{ R }, B{ R }; |,

queue Q; Accessor to
buffer

Q.submit([&](handler& h) { _[
accessor out(A, h, write only); "

 Across both devices and host!

) h.parallel for(R, [=](auto idx) {
Accessors: Mechanism to st [Adb] = seb Bl s B

access buffer data

Q.submit([&](handler& h) {

i } accessor out(A, h, write only);
* Create data dependencies in the h.parallel for(R, [=](auto idx) {

SYCL graph that order kernel out[idx] = idx[@]; }); });
executions

Copyright © 2019, Intel Corporation. All rights reserved { inte‘) | 41

*Other names and brands may be claimed as the property of others.

DPC++ CODE ANATOMY

* oneAPI programs require the include of cl/sycl.hpp.

* [tis recommended to employ the namespace statement to save typing
repeated references into the sycl namespace

#include <CL/sycl.hpp>

using namespace sycl;

Copyright © 2019, Intel Corporation. All rights reserved. { intE|) | 42

*Other names and brands may be claimed as the property of others.

void dpcpp_code(int* a, int* b, int*
// Setting up a DPC++ device queue
queue q;

DPC++ CODE ANATOMY

c) {

Step 1: create a device queue

// Setup buffers for input and output vectors (developer can specify a device type via

buffer buf a(a, range<1>(N));
buffer buf b(b, range<1>(N));
buffer buf c(c, range<1>(N));

device selector or use default selector)

Step 2: create buffers
(represent both host and

//Submit Command group function object to the queue device memory)

g.submit([&] (handler &h){

//Create device accessors to buffers allocated in global memory

accessor A(buf_a, h, read only);
accessor B(buf b, h, read only);
accessor C(buf c, h, write only);

//Specify the device kernel body as a lambda function

Step 3: submita command for
(asynchronous) execution

Step 4: create buffer accessors
to access buffer data on the
device

h.parallel for(range<1>(N), [=](auto i){

C[i] = A[i] + B[i];
133
1)

Step 5: send a kernel (lambda) for
execution

Step 6: write a kernel

Kernel invocations are Kernel is invoked for each Kernel invocation has

executed in parallel element of the range

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

access to the invocation id

Done!
The results are copied to vector "¢’ at "buf ¢’ buffer destruction

CUSTOM DEVICE SELECTOR

The following code shows derived device selector that employs a device
selector heuristic. The selected device prioritizes a GPU device because the
integer rating returned is higher than for CPU or other accelerator.

#include <CL/sycl.hpp>
using namespace cl::sycl;
class my device selector |: public device selector {
public:
int operator()(const device& dev) const override {
int rating = 0;
if (dev.is gpu() & (dev.get info<info::device::name>().find(“vendor") != std::string::npos))
rating = 3;

else if (dev.is _gpu()) rating = 2;
else if (dev.is_cpu()) rating = 1;

return rating;
}s
}s
int main() {
my_device_selector selector;
queue q(selector);
std::cout << "Device: "
<< q.get_device().get_info<info::device::name>() << std::endl;
return 0;

Copyright © 2019, Intel Corporation. All rights reserved. intel) 44
*Other names and brands may be claimed as the property of others.

ASYNCHRONOUS EXECUTION

Think of a SYCL application as two parts:
1. Host code
2. The graph of kernel executions

These execute independently, except at synchronizing operations

 The host code submits work to build the graph (and can do compute work itself)

« The graph of kernel executions and data movements executes asynchronously from host
code, managed by the SYCL runtime

Copyright © 2019, Intel Corporation. All rights reserved { inte‘) | 45

*Other names and brands may be claimed as the property of others.

ASYNCHRONOUS EXECUTION (CONT'D)

Host

Enqueues A4

kernel to
graph, and
keeps
going

v

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Graph

#include <CL/sycl.hpp>
#include <iostream>
constexpr int num=16;

using namespace cl::sycl; Graph executes
asynchronously
int main() { to host program
auto R = range<1>{ num };
buffer<int> A{ R };
queue{}.submit([&] (handler& h) { ‘ A
accessor out(A, h, write only);
h.parallel for(R, [=](id<1> idx) {
out[idx] = idx[e]; }); }); — Kernel
host accessor result(A, read only); ‘ A

for (int i=0; i<num; ++i)
std::cout << result[i] << "\n";

return 0;

Copyright © 201
*Other names anc

GRAPH OF KERNEL EXECUTIONS

int main() {

h.

}

auto R = range<1>{ num };
buffer<int> A{ R }, B{ R };
queue Q;

Q[submit) [&](handler& h) {

accessor out(A, h, write only);
h.parallel for(R, [=](id<1> idx) {
out[idx] = idx[@]; }); });

Q[submit) [&](handler& h) {

accessor out(A, h, write only);
h.parallel for(R, [=](id<1> idx) {
out[idx] = idx[@]; }); });

Kernel 1

Q|submitf[&](handler& h) {

accessor out(B, h, write only);
h.parallel for(R, [=](id<1> idx) {

out[idx] = idx[@]; }); });

Q[submit) [&](handler& h) {

accessor in(A, h, read only);

accessor inout(B, h);

parallel for(R, [=](id<1> idx) {
inout[idx] *= in[idx]; }); });

Automatic data and control
dependence resolution!

‘A
{B

Kernel 1
l A Kernel 3
Kernel 2
B
\A
§ = data
dependence
Kernel 4
\
Program
completion

SYNCHRONIZATION - HOST ACCESSOR

Buffer takes ownership of the

int main() {)
constexpr int N = 100; data stored in vector.

auto R = range<1>(N);
std::vector<double> v(N, 10);
queue (;

buffer buf(v)

q.submit([&](handler& h) { Creating host accessor is a
accessor a(buf, h)

h-p?tjziwllelzfor(R, [=](auto i) { blocking call and will only return
a[i] -= 2;

})1_’)3 after all enqueued DPC++ kernels

that modify the same bufferin

host_accessor b(buf, read only);
for (int i = 0; i < N; i++) .
std:icout << B[1] << "\n"; any queue completes execution

return 0;

and the data is available to the

host via this host accessor.

Copyright © 2019, Intel Corporation. All rights reserved. { intE|) | 48

*Other names and brands may be claimed as the property of others.

SYNCHRONIZATION - BUFFER DESTRUCTION - A BETTER WAY

#include <CL/sycl.hpp>
constexpr int N=100;
using namespace cl::sycl;

void dpcpp_code(std::vector<double> &v, queue &g){
auto R = range<1>(N);
buffer buf(v);
g.submit([&](handler& h) {
accessor a(buf, h);
h.parallel for(R, [=](auto i) {
al[i] -= 2;
1)
})s

main() {
std::vector<double> v(N, 10);

queue g;

dpcpp_code(v,q);

for (int 1 = 0; 1 < N; i++)
std::cout << v[i] << "\n";

return 0;

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Buffer creation happens within

a separate function scope.

When execution advances
beyond this function scope,
buffer destructor is invoked
which relinquishes the
ownership of data and copies
back the data to the host

memory.

HANDS-ON LAB - COMPLEX NUMBER MULTIPLICATION

* |n this lab we provide with the source code that computes multiplication of
two complex numbers where Complex class is the definition of a custom
type that represents complex numbers

* |n this example the student will learn how to create a custom device
selector and to target GPU or CPU of a specific vendor. The student will
also learn how to pass in a vector of custom Complex class objects in
parallel and needs to modify the source code to setup a write accessor
and call the Complex class member function as kernel to compute the
multiplication

Copyright © 2019, Intel Corporation. All rights reserved { inte‘) | 50

*Other names and brands may be claimed as the property of others.

TRANSITION TO JUPYTER NOTEBOOK - COMPLEX NUMBER MULTIPLICATION

Welcome.ipynb

Select link DPC++ Program Structure

*Other names and brands may be claimed as the property of others.

RECAP

oneAPI solves the challenges of programming in a heterogeneous world
Take advantage of oneAPI solutions to enable your workflows

Use the Intel” DevCloud to test-drive oneAPI tools and libraries

Introduced to DPC++ language and programming model

Important Classes for DPC++ application

Device selection and offloading kernel workloads

DPC++ Buffers, Accessors, Command Group handler, lambda code as kernel

Hands on activities

* Vector-Increment/Vector-add exercise — demonstrate coding ease by modifying the
sample source code.

 Complex number multiplication

Copyright © 2019, Intel Corporation. All rights reserved. intel) 52
*Other names and brands may be claimed as the property of others.

DISCLAIMERS

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact
your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata
are available on request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS
IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S.
and other countries.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

*Other names and brands may be claimed as the property of others.

Copyright © 2019, Intel Corporation. All rights reserved. { lntE| | 53

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

