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▪ Learn the basics of writing Data Parallel C++ programs

▪ Understand the development flow for FPGAs with the Intel® oneAPI toolkits

▪ Gain an understanding of common optimization methods for FPGAs

▪ … 

Tutorial Objectives
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TUTORIAL AGENDA
The Basics

The oneAPI Toolset
Introduction to Data Parallel C++

Lab: Overview of DPC++

Using FPGAs with the Intel® oneAPI Toolkits
What are FPGAs and Why Should I Care About Programming Them?
Development Flow for Using FPGAs with the Intel® oneAPI Toolkits

Lab: Practice the FPGA Development Flow

Optimizing Your Code for FPGAs
Introduction to Optimizing FPGAs with the Intel oneAPI Toolkits

Lab: Optimizing the Hough Transform Kernel
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Optimization Notice
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• Execute kernel in parallel over a 1, 2, or 3 dimensional index space
• Work-item can query ID and range of invocation (num_work_items)

parallel_for( num_work_items )

myQueue.submit([&](handler & cgh) {
    stream os(1024, 80, cgh);

    cgh.parallel_for<class myKernel>(range<1>(6),
                                   [=] (id<1> index) {
        os << index << "\n";
    });
}); 

Output:
id<1>{ 0 }
id<1>{ 1 }
id<1>{ 2 }
id<1>{ 3 }
id<1>{ 4 }
id<1>{ 5 }

6
1

Can communicate 
execution across 
ND-Range
Sub-group is a DPC++ 
extension.

KERNEL Model
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Optimization Notice
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• Similar to CPU code with an outer loop
• Allows many-staged custom hardware to be built in 

an FPGA

single_task(
)

myQueue.submit([&](handler & cgh) {
    stream os(1024, 80, cgh);

    cgh.single_task<class myKernel>([=] () {
      for (int i=0;i<NUM_ELEMENTS;i++) {
        os << i << "\n";
      }
    });
}); 

Output:
  0
  1
  2
  3
  4
  5

6
1

KERNEL Model

A custom hardware datapath 
can be generated in an FPGA 

for complex single_task kernels
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Optimization Notice

How it maps to CPU, GPU, FPGA

• MULTI-CORE
• MULTI-THREADED
• SIMD
• PIPELINED

DSP 
Block Memory 

Block

• Custom Pipeline
• MULTI-CORE (pipeline)

CPU GPU

FPGA
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• MULTI-CORE
• MULTI-THREADED
• SIMD
• PIPELINED



What are FPGAs and Why Should 
I Care About Programming Them?

A Brief Introduction



First, let’s define the acronym. It’s 
a Field-Programmable Gate Array.
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What is an FPGA?
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“Field-Programmable Gate Array” (FPGA)

▪ “Gates” refers to logic gates, implemented with transistors
– These are the tiny pieces of hardware on a chip that make up the design

▪ “Array” means there are many of them manufactured on the chip
– (Many = Billions) They are arranged into larger structures as we will see

▪ “Field-Programmable” means the connections between the internal 
components are programmable after deployment

FPGA = Programmable Hardware
Reconfigurable Computing
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The FPGA is made up of small building 
blocks of logic and other functions

How an FPGA Becomes What You Want It To Be
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The FPGA is made up of small building 
blocks of logic and other functions

▪ The building blocks you

How an FPGA Becomes What You Want It To Be

choose 
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The FPGA is made up of small building 
blocks of logic and other functions

▪ The building blocks you

▪ How you                   them

How an FPGA Becomes What You Want It To Be

choose 

configure
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The FPGA is made up of small building 
blocks of logic and other functions

▪ The building blocks you

▪ How you                   them

▪ And how you                them

Determine what function the FPGA 
performs

How an FPGA Becomes What You Want It To Be

choose 

configure

connect
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Blocks Used to Build What You’ve Coded

Custom
XOR

Custom 64-bit 
bit-shuffle and encode

Custom state 
machine

Look-up Tables 
and Registers
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Blocks Used to Build What You’ve Coded

Small
memories

Larger 
memories

Memory
Block

20 Kb

addr

data_in

data_out

On-chip RAM 
Blocks
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Blocks Used to Build What You’ve Coded

Custom
Math

Functions
DSP Blocks
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Then, It’s All Connected 
Together

Blocks are connected with 
custom routing 

determined by your code
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What About Connecting to the Host?

Accelerated functions run on a PCIe 
attached FPGA card

The host interface is also “baked in” to the 
FPGA design.

This portion of the design is pre-built and 
not dependent on your source code.
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Intel® FPGAs Available



It all comes down to the 
advantage of custom hardware.

20

Why should I care about 
programming for an FPGA?
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First, some impressive 
examples…
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Sample FPGA Workloads
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Code to Hardware: An 
Introduction
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Implementing Optimized 
Custom Compute 
Pipelines (CCPs) 
synthesized from 

compiled code

Intel® FPGAs
Pre-Compiled BSP

Memory InterfaceHost Link I/O

CCP
On-chip Memory

CCP
On-chip Memory

CCP

On-chip 
Memory

CCP

On-chip 
Memory

CCP

On-chip 
MemoryCCP

On-chip Memory

Custom Compute Pipeline
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Hardware is added for 
▪ Computation

▪Memory Loads and Stores

▪Control and scheduling
– Loops & Conditionals

How Is a Pipeline Built?

for (int i=0; i<LIMIT; i++) {
  c[i] = a[i] + b[i];
}

+

Load Load

Store

Loop
Control

Data Path
Control Path
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▪ Handshaking signals for variable 
latency paths

▪ Operations with a fixed latency 
are clustered together

▪ Fixed latency operations improve
– Area: no handshaking signals 

required
– Performance: no potential stalling 

due to variable latencies

Connecting the Pipeline Together

a b

c

d
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▪ The compiler automatically identifies 
independent operations

▪ Simultaneous hardware is built to 
increase performance

▪ This achieves data parallelism in a 
manner similar to a superscalar 
processor

▪ Number of independent operations 
only bounded by the amount of 
hardware

Simultaneous Independent Operations

c = a + b;
f = d * e;

+

a b

c
*

d e

f
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▪ Custom on-chip memory 
structures are built for the 
variables declared with the kernel 
scope

▪ Or, for memory accessors with a 
target of local

▪ Load and store units to the 
on-chip memory will be built 
within the pipeline

On-Chip Memories Built for Kernel Scope Variables
//kernel scope
cgh.single_task<>([=]() {
  int arr[1024];
  …
  arr[i] = …; //store to memory
  …
  … = arr[j] //load from memory
  …
} //end kernel scope

Pipeline
.
.
.
.
.
.
.
.
.

On-chip 
memory 
structure 
for array

arr

32-bits

1024
Store

Load
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▪ Single work-item kernels almost 
always contain an outer loop

▪ Work executing in multiple stages of 
the pipeline is called “pipeline 
parallelism”

▪ Pipelines from real-world code are 
normally hundreds of stages long

▪ Your job is to keep the 
data flowing efficiently

Pipeline Parallelism for Single Work-Item Kernels

handle.single_task<>([=]() {
  … //accessor setup
  for (int i=0; i<LIMIT; i++) {
    c[i] += a[i] + b[i];
  }
});

+

Load Load

Store
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When a dependency in a single 
work-item kernel can be resolved by 
creating a path within the pipeline, 
the compiler will build that in.

Dependencies Within the Single 
Work-Item Kernel

handle.single_task<>([=]() {
  int b = 0;
  for (int i=0; i<LIMIT; i++) {
    b += a[i];
  }
});

+

Load Load

Store

Key Concept
Custom built-in dependencies 

make FPGAs powerful for 
many algorithms
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How Do I Use Tasks and Still Get Data Parallelism?

The most common technique is to unroll your loops

handle.single_task<>([=]() {
  … //accessor setup
  #pragma unroll
  for (int i=1; i<3; i++) {
    c[i] += a[i] + b[i];
  }
});

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 
3

Iteration 
2

Iteration 
1
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The compiler will still pipeline an 
unrolled loop, combining the two 
techniques

– A fully unrolled loop will not be pipelined 
since all iterations will kick off at once

Unrolled Loops Still 
Get Pipelined Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 
3

Iteration 
2

Iteration 
1

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 
6

Iteration 
5

Iteration 
4

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 
9

Iteration 
8

Iteration 
7

handle.single_task<>([=]() {
  … //accessor setup
  #pragma unroll 3
  for (int i=1; i<9; i++) {
    c[i] += a[i] + b[i];
  }
});
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FPGAs can run more than one kernel 
at a time

– The limit to how many independent kernels 
can run is the amount of resources 
available to build the kernels

Data can be passed between kernels 
using pipes

– Another great FPGA feature explained in 
the Intel® oneAPI DPC++ FPGA 
Optimization Guide

What About Task Parallelism?

Representation of Gzip FPGA example 
included with the Intel oneAPI Base Toolkit
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▪ Kernels launched parallel_for() or parallel_for_work_group() with a 
NDRange/work-group size of >1

So, Can We Build These? NDRange Kernels

…//application scope

queue.submit([&](handler &cgh) {
  auto A = A_buf.get_access<access::mode::read>(cgh);
  auto B = B_buf.get_access<access::mode::read>(cgh);
  auto C = C_buf.get_access<access::mode::write>(cgh);
  
  cgh.parallel_for<class VectorAdd>(num_items, [=](id<1> wiID) {
      c[wiID] = a[wiID] + b[wiID];
   });

});

…//application scope

Yes, no problem, 
and you will learn 

to code them!

But, tasks usually 
imply more optimal 
pipeline structures.

The loop 
optimizations are 

limited for 
NDRange kernels.



Development Flow for Using 
FPGAs with the Intel® oneAPI 
Toolkits
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▪ FPGA Emulator target 
(Emulation)

– Compiles in seconds

– Runs completely on the host

▪ Optimization report generation
– Compiles in seconds to minutes

– Identify bottlenecks

▪ FPGA bitstream compilation
– Compiles in hours

– Enable profiler to get runtime 
analysis

FPGA Development Flow with oneAPI

Long Compile!!!
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Anatomy of a Compiler Command Targeting FPGAs

dpcpp –fintelfpga *.cpp/*.o [device link options] [-Xs arguments]

Language
DPCPP = Data 

Parallel C++

Target Platform

Input Files
source or object

Link Options FPGA-Specific 
Arguments
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Emulation

Get it Functional

Does my code give me the 
correct answers?
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Emulation

▪ Quickly generate x86 executables that represent the kernel

▪ Debug support for
– Standard DPC++ syntax, channels, print statements

dpcpp
Compiler

./mycode.emu
…
Running …

mycode.cpp

dpcpp -fintelfpga <source_file>.cpp –DFPGA_EMULATOR 
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Explicit Selection of Emulation Device

▪ Declare the device_selector as 
type cl::sycl::intel::fpga_emulator

▪ Include fpga_extensions.hpp

▪ Include –DFPGA_EMULATOR in 
your compilation command

#include <CL/sycl/intel/fpga_extensions.hpp>
using namespace cl::sycl;
...

#ifdef FPGA_EMULATOR
  intel::fpga_emulator_selector device_selector;
#else
  intel::fpga_selector device_selector;
#endif

queue deviceQueue(device_selector);
...

dpcpp -fintelfpga <source_file>.cpp –DFPGA_EMULATOR 
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Using the Static Optimization Report

Get it Optimized

Where are the bottlenecks?
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Compiling to Produce an Optimization Report

A report showing optimization, area, and architectural information will be 
produced in <file_name>.prj/reports/

– We will discuss more about the report later

dpcpp -fintelfpga <source_file>.cpp -c -o <file_name>.o
dpcpp -fintelfpga <file_name>.o -fsycl-link -Xshardware

Two Step Method:

dpcpp -fintelfpga <source_file>.cpp -fsycl-link -Xshardware
One Step Method:

The default value for –fsycl-link is  -fsycl-link=early 
which produces an early image object file and report
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FPGA Bitstream Compilation

Check Runtime Behavior

Check what you can’t check 
during static analysis
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Compile to FPGA Executable with Profiler Enabled

The profiler will be instrumented within the image and you will be able to run the 
executable to return information to import into Intel® Vtune Amplifier.

To compile to FPGA executable without profiler, leave off –Xsprofile.

dpcpp -fintelfpga <source_file>.cpp -c -o <file_name>.o
dpcpp -fintelfpga <file_name>.o –Xshardware -Xsprofile

Two Step Method:

dpcpp -fintelfpga <source_file>.cpp –Xshardware -Xsprofile
One Step Method:
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Compiling FPGA Device Separately and Linking

▪ In the default case, the DPC++ Compiler handles generating the host 
executable, device image, and final executable

▪ It is sometimes desirable to compile the host and device separately so 
changes in the host code do not trigger a long compile

host_only.cpp

has_kernel.cpp
dpcpp -fintelfpga has_kernel.cpp –fsycl-link=image –o has_kernel.o –Xshardware

Partition code

Then run this command to compile the FPGA image:

dpcpp -fintelfpga has_kernel.cpp –c –o host_only.o
This command to produce an object file out of the host only code:

dpcpp -fintelfpga has_kernel.o host_only.o –o a.out –Xshardware
This command to put the object files together into an executable:

This is the long 
compile
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References and Resources

▪ Website hub for using FPGAs with oneAPI
– https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.

html 

▪ Intel® oneAPI Programming Guide 
– https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-program

ming-guide.html 

▪ Intel® oneAPI DPC++ FPGA Optimization Guide
– https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimiz

ation-guide.html 

▪ FPGA Tutorials GitHub
– https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials 

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials


Lab: Practice the FPGA 
Development Flow



Introduction to Optimizing FPGAs 
with the Intel oneAPI Toolkits
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Agenda

▪ Reports

▪ Loop Optimization

▪ Memory Optimization

▪ Other Optimization Techniques

▪ Lab: Optimizing the Hough Transform Kernel
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Reports
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HTML Report

Static report showing optimization, area, and architectural 
information

▪ Automatically generated with the object file
– Located in <file_name>.prj\reports\report.html

▪ Dynamic reference information to original source code
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Optimization Report – Throughput Analysis

▪ Loops Analysis and Fmax II sections

▪ Actionable feedback on pipeline 
status of loops

▪ Show estimated Fmax of each loop
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Optimization Report – Area Analysis

Generate detailed estimated area 
utilization report of kernel scope code

▪ Detailed breakdown of resources by 
system blocks

▪ Provides architectural details of HW
– Suggestions to resolve inefficiencies



▪ The system view of the 
Graph Viewer shows 
following types of 
connections
– Control

– Memory, if your design has 
global or local memory

– Pipes, if your design uses 
pipes 

54

Optimization Report – Graph Viewer



55

Optimization Report – Schedule Viewer

▪ Schedule in clock 
cycles for different 
blocks in your code
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HTML Kernel Memory Viewer

Helps you identify data movement 
bottlenecks in your kernel design. Illustrates:

▪ Memory replication

▪ Banking

▪ Implemented arbitration

▪ Read/write capabilities of each memory 
port
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Profiler

▪ Inserts counters and 
profiling logic into the HW 
design

▪ Dynamically reports the 
performance of kernels

▪ Enable using the 
–Xsprofile option with 
dpcpp

CCU

Load

Store

+

Load Memory Mapped 
Registers

To Host
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Collecting Profiling Data

▪ Run the executable that integrates the kernel with the profiler using

▪ A profile.json file will be produced

▪ Import the profile.json file into the Intel® Vtune™ Profiler

aocl profile -s <path/to/source>.source /path/to/host-executable
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Importing Profile Data into Intel® Vtune™ Profiler

▪ Place the collect profile.json file in a folder by itself

▪ Open the Intel Vtune Profiler using the command vtune-gui

▪ Press the Import button at the top of the GUI

▪ Select Import raw trace data

▪ Navigate to the folder in the file browser (do not click into folder), and Open

▪ Click the Blue Import button in the GUI
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Loop Optimization
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Types of Kernels (Review)

▪ There are two types of kernels in Data Parallel C++
– Single work-item

– Parallel

▪ For FPGAs, the compiler will automatically detect the kind of kernel input

▪ Loop analysis will only be done for single work-item kernels

▪ Most loop optimizations will only apply to single work-item kernels

▪ Most optimized FPGA kernels are single work-item kernels
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▪ Single work items kernels are 
kernels that contain no reference 
to the work item ID.

▪ Usually launched with the group 
handler member function 
single_task().

▪ Or, launched with other functions 
and given a work-group/NDRange 
size of 1.

▪ Almost always contain an outer 
loop.

Single Work-Item Kernels

…//application scope

queue.submit([&](handler &cgh) {
  auto A = A_buf.get_access<access::mode::read>(cgh);
  auto B = B_buf.get_access<access::mode::read>(cgh);
  auto C = C_buf.get_access<access::mode::write>(cgh);
  
  cgh.single_task<class swi_add>([=]() {
    for (unsigned i = 0; i < 128; i++) {
      c[i] = a[i] + b[i];
    }
   });

});

…//application scope
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▪ Kernels launched with the command group handler member function parallel_for() or 
parallel_for_work_group() with a NDRange/work-group size of >1.

▪ Much of this section will not apply to NDRange kernels

NDRange Kernels

…//application scope

queue.submit([&](handler &cgh) {
  auto A = A_buf.get_access<access::mode::read>(cgh);
  auto B = B_buf.get_access<access::mode::read>(cgh);
  auto C = C_buf.get_access<access::mode::write>(cgh);
  
  cgh.parallel_for<class VectorAdd>(num_items, [=](id<1> wiID) {
      c[wiID] = a[wiID] + b[wiID];
   });

});

…//application scope



c = a + b

load a load b 11
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Understanding Initiation Interval

▪ dpcpp will infer pipelined parallel 
execution across loop iterations
– Different stages of pipeline will ideally 

contain different loop iterations

▪ Best case is that a new piece of data 
enters the pipeline each clock cycle

store c

n - Iteration number

…
cgh.single_task<class swi_add>([=]() {
    for (unsigned i = 0; i < 128; i++) {
      c[i] = a[i] + b[i];
    }
   });
…



c = a + b 1

load a load b 11
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Understanding Initiation Interval

▪ dpcpp will infer pipelined parallel 
execution across loop iterations
– Different stages of pipeline will ideally 

contain different loop iterations

▪ Best case is that a new piece of data 
enters the pipeline each clock cycle

store c

n - Iteration number

2 2

…
cgh.single_task<class swi_add>([=]() {
    for (unsigned i = 0; i < 128; i++) {
      c[i] = a[i] + b[i];
    }
   });
…



c = a + b 1

load a load b 11
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Understanding Initiation Interval

▪ dpcpp will infer pipelined parallel 
execution across loop iterations
– Different stages of pipeline will ideally 

contain different loop iterations

▪ Best case is that a new piece of data 
enters the pipeline each clock cycle

store c

2

1

n - Iteration number

2 23 3

…
cgh.single_task<class swi_add>([=]() {
    for (unsigned i = 0; i < 128; i++) {
      c[i] = a[i] + b[i];
    }
   });
…
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Loop Pipelining vs Serial Execution

Serial execution is the worst case. One iteration needs to complete fully before 
a new piece of data enters the pipeline.

For Begin

For End

Op 2

Op 3

Op 1

Op 2

Op 3

Op 1

i0

i1

i2

i2i2i3

i0

i1

Worst Case Best Case
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In-Between Scenario

▪ Sometimes you must wait more than one 
clock cycle to input more data

▪ Because dependencies can’t resolve fast 
enough

▪ How long you have to wait is called 
Initiation Interval or II

▪ Total number of cycles to run kernel is 
about (loop iterations)*II
– (neglects initial latency)

▪ Minimizing II is key to performance

L = K

0

…
v

…

…

…

…

1

II = 6
6 cycles later, next 
iteration enter the 
loop body
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Why Could This Happen?

▪ Memory Dependency
– Kernel cannot retrieve 

data fast enough from 
memory

_accumulators[(THETAS*(rho+RHOS))+theta] += increment;

Value must be retrieved from global memory
and incremented



70

What Can You Do? Use Local Memory

Transfer global memory contents to local 
memory before operating on the data 

…
constexpr int N = 128;
queue.submit([&](handler &cgh) {
  auto A =
    A_buf.get_access<access::mode::read_write>(cgh);

  cgh.single_task<class unoptimized>([=]() {
    for (unsigned i = 0; i < N; i++)
      A[N-i] = A[i];
    }
  });

}); 
…

…
constexpr int N = 128;
queue.submit([&](handler &cgh) {
  auto A =
    A_buf.get_access<access::mode::read_write>(cgh);
  
  cgh.single_task<class optimized>([=]() {
    int B[N];
    
    for (unsigned i = 0; i < N; i++)
      B[i] = A[i];

    for (unsigned i = 0; i < N; i++)
      B[N-i] = B[i];

    for (unsigned i = 0; i < N; i++)
      A[i] = B[i];
  });

}); 
…

Non-optimized Optimized
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What Can You Do? Tell the Compiler About Independence

▪ [[intelfpga::ivdep]]
– Dependencies ignored for all accesses to memory arrays

▪ [[intelfpga::ivdep(array_name)]]
– Dependency ignored for only array_name accesses

[[intelfpga::ivdep(A)]]
for (unsigned i = 1; i < N; i++) {

A[i] = A[i – X[i]];
B[i] = B[i – Y[i]];

}

Dependency ignored for A array
Dependency for B still enforced

[[intelfpga::ivdep]]
for (unsigned i = 1; i < N; i++) {

A[i] = A[i – X[i]];
B[i] = B[i – Y[i]];

}

Dependency ignored for A and B array
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Why Else Could This Happen?

r_int[k] = ((a_int[k] / b_int[k]) / a_int[1]) / r_int[k-1];

Difficult double precision floating point 
operation must be completed

▪ Data Dependency
– Kernel cannot complete a 

calculation fast enough
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What Can You Do?

▪ Do a simpler calculation

▪ Pre-calculate some of the operations on the host

▪ Use a simpler type

▪ Use floating point optimizations (discussed later)

▪ Advanced technique: Increase time (pipeline stages) 
between start of calculation and when you use answer
– See the “Relax Loop-Carried Dependency” in the Optimization Guide for 

more information
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The compiler will still pipeline an 
unrolled loop, combining the two 
techniques

– A fully unrolled loop will not be pipelined 
since all iterations will kick off at once

How Else to Optimize a 
Loop? Loop Unrolling Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 
3

Iteration 
2

Iteration 
1

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 
6

Iteration 
5

Iteration 
4

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 
9

Iteration 
8

Iteration 
7

handle.single_task<>([=]() {
  … //accessor setup
  #pragma unroll 3
  for (int i=1; i<9; i++) {
    c[i] += a[i] + b[i];
  }
});
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Fmax

▪ The clock frequency the FPGA will be clocked at depends on what hardware 
your kernel compiles into

▪ More complicated hardware cannot run as fast

▪ The whole kernel will have one clock

▪ The compiler’s heuristic is to sacrifice clock frequency to get a higher II

A slow operation can slow down your entire kernel by 
lowering the clock frequency
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How Can You Tell This Is a Problem?

Fmax II report tells you the 
target frequency for each loop in 
your code.

cgh.single_task<example>([=]() {
  int res = N;
  #pragma unroll 8
  for (int i = 0; i < N; i++) {
    res += 1;
    res ^= i;
  }
  acc_data[0] = res;
}); 
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What Can You Do?

▪Make the calculation simpler

▪ Tell the compiler you’d like to change the trade off between 
II and Fmax
–  Attribute placed on the line before the loop
– Set to a higher II than what the loop currently has

[[intelfpga::ii(n)]] 
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Area

The compiler sacrifices area in order to improve loop performance. What if you 
would like to save on the area in some parts of your design?

▪ Give up II for less area
– Set the II higher than what compiler result is

▪ Give up loop throughput for area
– Compiler increases loop concurrency to achieve greater throughput

– Set the max_concurrency value lower than what the compiler result is

[[intelfpga::ii(n)]] 

[[intelfpga::max_concurrency(n)]] 
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Memory Optimization
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Memory Model

▪ Private Memory
– On-chip memory, unique to 

work-item

▪ Local Memory
– On-chip memory, shared within 

workgroup

▪ Global Memory
– Visible to all workgroups

Kernel

Global Memory

Workgroup

Local Memory

Work-ite
m

Private 
Memory

Work-ite
m

Private 
Memory

Workgroup

Local Memory

Work-ite
m

Private 
Memory

Work-ite
m

Private 
Memory

Workgroup

Local Memory

Work-ite
m

Private 
Memory

Work-ite
m

Private 
Memory

Workgroup

Local Memory

Work-ite
m

Private 
Memory

Work-ite
m

Private 
Memory

These are the same 
for single_task 

kernels
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Understanding Board Memory Resources

Memory Type Physical 
Implementation

Latency
for random access

(clock cycles)

Throughput 
(GB/s)

Capacity
(MB)

Global DDR 240 34.133 8000
Local On-chip RAM 2 ~8000 66

Private On-chip RAM / 
Registers

2/1 ~240 0.2

Key takeaway: many times the solution for a bottleneck caused by slow 
memory access will be to use local memory instead of global 
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Global Memory Access is Slow – What to Do? (4)

We’ve seen this before... This will appear as a 
memory dependency problem

Transfer global memory contents to local 
memory before operating on the data 
…
constexpr int N = 128;
queue.submit([&](handler &cgh) {
  auto A =
    A_buf.get_access<access::mode::read_write>(cgh);

  cgh.single_task<class unoptimized>([=]() {
    for (unsigned i = 0; i < N; i++)
      A[N-i] = A[i];
    }
  });

}); 
…

…
constexpr int N = 128;
queue.submit([&](handler &cgh) {
  auto A =
    A_buf.get_access<access::mode::read_write>(cgh);
  
  cgh.single_task<class optimized>([=]() {
    int B[N];
    
    for (unsigned i = 0; i < N; i++)
      B[i] = A[i];

    for (unsigned i = 0; i < N; i++)
      B[N-i] = B[i];

    for (unsigned i = 0; i < N; i++)
      A[i] = B[i];
  });

}); 
…

Non-optimized Optimized
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Local Memory Bottlenecks

If more load and store points want to 
access the local memory than there 
are ports available, arbiters will be 
added

These can stall, so are a potential 
bottleneck

Show up in red in the Memory Viewer 
section of the optimization report
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Local Memory Bottlenecks

Natively, the memory architecture has 2 ports

The compiler optimizes memory accesses to map to these without arbitration

Your job is to write code the compiler can optimize

Local Memory Interconnect

M20K

M20K

M20K

M20K

M20K

M20K

Kernel Pipeline

port 0

port 1
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Double-Pumped Memory Example

Increase the clock rate to 2x

Compiler can automatically implement 
double-pumped memory – turning 2 ports to 4

//kernel scope
...
  int array[1024];

  array[ind1] = val;

  array[ind1+1] = val;

  calc = array[ind2] + array[ind2+1];
…
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Local Memory Replication Example
//kernel scope
…
    int array[1024];

int res = 0;

array[ind1] = val;
#pragma unroll
for (int i = 0; i < 9; i++)

res += array[ind2+i];
  

calc = res;
…

ST

LD

Turn 4 ports of double-pumped memory to unlimited ports

Drawbacks: logic resources, stores must go to each replication



Coalescing 

//kernel scope
…
local int array[1024];
int res = 0;

#pragma unroll
for (int i = 0; i < 4; i++)

array[ind1*4 + i] = val;
  
#pragma unroll
for (int i = 0; i < 4; i++)

res += array[ind2*4 + i];

calc = res;
…

87

Continuous addresses can be 
coalesced into wider accesses
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Banking

Divide the memory into independent fractional pieces (banks)
//kernel scope
…
int array[1024][2];

array[ind1][0] = val1;
array[ind2][1] = val2;

calc =  (array[ind2][0] +
         array[ind1][1]);
…

Compiler looks at lower indices by default
Indices for banking must be a power of 2 size
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Attributes for Local Memory Optimization

Attribute Usage
numbanks [[intelfpga::numbanks(N)]]
bankwidth [[intelfpga::bankwidth(N)]]

singlepump [[intelfpga::singlepump]]
doublepump [[intelfpga::doublepump]]

max_replicates [[intelfpga::max_replicates(N)]]
simple_dual_port [[intelfpga::simple_dual_port]]

Note: This is not a comprehensive list. Consult the Optimization Guide for more.

Note: Let the compiler try on it’s own first. It’s very good at inferring an optimal structure!
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Pipes – Element the Need for Some Memory

Create custom direct point-to-point communication between 
CCPs with Pipes

CCP 1 CCP 2 CCP 3Pipe Pipe

Read
W

rit
e

Global Memory
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Task Parallelism By Using Pipes

Launch separate kernels simultaneously

Achieve synchronization and data sharing using pipes

Make better use of your hardware



Lab: Optimizing the Hough 
Transform Kernel
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Other Optimization Techniques
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Avoid Expensive Functions

▪ Expensive functions take a lot of hardware and run slow

▪ Examples
– Integer division and modulo (remainder) operators
– Most floating-point operations except addition, multiplication, 

absolution, and comparison
– Atomic functions 
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Inexpensive Functions

▪ Use instead of expensive functions whenever possible
– Minimal effects on kernel performance

– Consumes minimal hardware

▪ Examples
– Binary logic operations such as AND, NAND, OR, NOR, XOR, and XNOR

– Logical operations with one constant argument

– Shift by constant

– Integer multiplication and division by a constant that is to the power of 2

– Bit swapping (Endian adjustment)
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Use Least-“Expensive” Data Type 

▪ Understand cost of each data type in latency and logic usage
– Logic usage may be > 4x for double vs. float operations

– Latency may be much larger for float and double operations compared to fixed point 
types

▪ Measure or restrict the range and precision (if possible)
– Be familiar with the width, range and precision of data types 

– Use half or single precision instead of double (default)

– Use fixed point instead of floating point

– Don’t use float if short is sufficient
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Floating-Point Optimizations

▪ Apply to half, float and double data types

▪ Optimizations will cause small differences in floating-point results
– Not IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008) compliant

▪ Floating-point optimizations:
– Tree Balancing

– Reducing Rounding Operations



Tree-Balancing

▪ Floating-point operations are not associative
– Rounding after each operation affects the outcome

– ie. ((a+b) + c) != (a+(b+c))

▪ By default the compiler doesn’t reorder floating-point operations
– May creates an imbalance in a pipeline, costs latency and possibly area

▪ Manually enable compiler to balance operations
– For example, create a tree of floating-point additions in SGEMM, rather than a chain

– Use -Xsfp-relaxed=true flag when calling dpcpp
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Rounding Operations

▪ For a series of floating-point operations, IEEE 754 require multiple rounding 
operation

▪ Rounding can require significant amount of hardware resources

▪ Fused floating-point operation
– Perform only one round at the end of the tree of the floating-point operations

– Other processor architectures support certain fused instructions such as fused 
multiply and accumulate (FMAC)

– Any combination of floating-point operators can be fused

▪ Use dpcpp compiler switch -Xsfpc



References and Resources



101

References and Resources

▪ Website hub for using FPGAs with oneAPI
– https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.

html 

▪ Intel® oneAPI Programming Guide 
– https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-program

ming-guide.html 

▪ Intel® oneAPI DPC++ FPGA Optimization Guide
– https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimiz

ation-guide.html 

▪ FPGA Tutorials GitHub
– https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials 

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials
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Upcoming Training

These online trainings are being developed throughout 2020

▪ Converting OpenCL Code to DPC++

▪ Loop Optimization for FPGAs with Intel oneAPI Toolkits

▪ Memory Optimization for FPGAs with Intel oneAPI Toolkits

…and others!
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