
Using Intel® oneAPI Toolkits
with FPGAs*
Prof. Ricardo Menotti (menotti@ufscar.br)
Federal University of Sao Carlos (UFSCar)

*Special thanks to Susannah Martin for the material and support

mailto:menotti@ufscar.br

2

▪ Learn the basics of writing Data Parallel C++ programs

▪ Understand the development flow for FPGAs with the Intel® oneAPI toolkits

▪ Gain an understanding of common optimization methods for FPGAs

▪ …

Tutorial Objectives

3

TUTORIAL AGENDA
The Basics

The oneAPI Toolset
Introduction to Data Parallel C++

Lab: Overview of DPC++

Using FPGAs with the Intel® oneAPI Toolkits
What are FPGAs and Why Should I Care About Programming Them?
Development Flow for Using FPGAs with the Intel® oneAPI Toolkits

Lab: Practice the FPGA Development Flow

Optimizing Your Code for FPGAs
Introduction to Optimizing FPGAs with the Intel oneAPI Toolkits

Lab: Optimizing the Hough Transform Kernel

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

4

• Execute kernel in parallel over a 1, 2, or 3 dimensional index space
• Work-item can query ID and range of invocation (num_work_items)

parallel_for(num_work_items)

myQueue.submit([&](handler & cgh) {
 stream os(1024, 80, cgh);

 cgh.parallel_for<class myKernel>(range<1>(6),
 [=] (id<1> index) {
 os << index << "\n";
 });
});

Output:
id<1>{ 0 }
id<1>{ 1 }
id<1>{ 2 }
id<1>{ 3 }
id<1>{ 4 }
id<1>{ 5 }

6
1

Can communicate
execution across
ND-Range
Sub-group is a DPC++
extension.

KERNEL Model

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

5

• Similar to CPU code with an outer loop
• Allows many-staged custom hardware to be built in

an FPGA

single_task(
)

myQueue.submit([&](handler & cgh) {
 stream os(1024, 80, cgh);

 cgh.single_task<class myKernel>([=] () {
 for (int i=0;i<NUM_ELEMENTS;i++) {
 os << i << "\n";
 }
 });
});

Output:
 0
 1
 2
 3
 4
 5

6
1

KERNEL Model

A custom hardware datapath
can be generated in an FPGA

for complex single_task kernels

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How it maps to CPU, GPU, FPGA

• MULTI-CORE
• MULTI-THREADED
• SIMD
• PIPELINED

DSP
Block Memory

Block

• Custom Pipeline
• MULTI-CORE (pipeline)

CPU GPU

FPGA

6

• MULTI-CORE
• MULTI-THREADED
• SIMD
• PIPELINED

What are FPGAs and Why Should
I Care About Programming Them?

A Brief Introduction

First, let’s define the acronym. It’s
a Field-Programmable Gate Array.

8

What is an FPGA?

9

“Field-Programmable Gate Array” (FPGA)

▪ “Gates” refers to logic gates, implemented with transistors
– These are the tiny pieces of hardware on a chip that make up the design

▪ “Array” means there are many of them manufactured on the chip
– (Many = Billions) They are arranged into larger structures as we will see

▪ “Field-Programmable” means the connections between the internal
components are programmable after deployment

FPGA = Programmable Hardware
Reconfigurable Computing

10

The FPGA is made up of small building
blocks of logic and other functions

How an FPGA Becomes What You Want It To Be

11

The FPGA is made up of small building
blocks of logic and other functions

▪ The building blocks you

How an FPGA Becomes What You Want It To Be

choose

12

The FPGA is made up of small building
blocks of logic and other functions

▪ The building blocks you

▪ How you them

How an FPGA Becomes What You Want It To Be

choose

configure

13

The FPGA is made up of small building
blocks of logic and other functions

▪ The building blocks you

▪ How you them

▪ And how you them

Determine what function the FPGA
performs

How an FPGA Becomes What You Want It To Be

choose

configure

connect

14

Blocks Used to Build What You’ve Coded

Custom
XOR

Custom 64-bit
bit-shuffle and encode

Custom state
machine

Look-up Tables
and Registers

15

Blocks Used to Build What You’ve Coded

Small
memories

Larger
memories

Memory
Block

20 Kb

addr

data_in

data_out

On-chip RAM
Blocks

16

Blocks Used to Build What You’ve Coded

Custom
Math

Functions
DSP Blocks

17

Then, It’s All Connected
Together

Blocks are connected with
custom routing

determined by your code

18

What About Connecting to the Host?

Accelerated functions run on a PCIe
attached FPGA card

The host interface is also “baked in” to the
FPGA design.

This portion of the design is pre-built and
not dependent on your source code.

19

Intel® FPGAs Available

It all comes down to the
advantage of custom hardware.

20

Why should I care about
programming for an FPGA?

21

First, some impressive
examples…

22

Sample FPGA Workloads

23

Code to Hardware: An
Introduction

24

Implementing Optimized
Custom Compute
Pipelines (CCPs)
synthesized from

compiled code

Intel® FPGAs
Pre-Compiled BSP

Memory InterfaceHost Link I/O

CCP
On-chip Memory

CCP
On-chip Memory

CCP

On-chip
Memory

CCP

On-chip
Memory

CCP

On-chip
MemoryCCP

On-chip Memory

Custom Compute Pipeline

25

Hardware is added for
▪ Computation

▪Memory Loads and Stores

▪Control and scheduling
– Loops & Conditionals

How Is a Pipeline Built?

for (int i=0; i<LIMIT; i++) {
 c[i] = a[i] + b[i];
}

+

Load Load

Store

Loop
Control

Data Path
Control Path

26

▪ Handshaking signals for variable
latency paths

▪ Operations with a fixed latency
are clustered together

▪ Fixed latency operations improve
– Area: no handshaking signals

required
– Performance: no potential stalling

due to variable latencies

Connecting the Pipeline Together

a b

c

d

27

▪ The compiler automatically identifies
independent operations

▪ Simultaneous hardware is built to
increase performance

▪ This achieves data parallelism in a
manner similar to a superscalar
processor

▪ Number of independent operations
only bounded by the amount of
hardware

Simultaneous Independent Operations

c = a + b;
f = d * e;

+

a b

c
*

d e

f

28

▪ Custom on-chip memory
structures are built for the
variables declared with the kernel
scope

▪ Or, for memory accessors with a
target of local

▪ Load and store units to the
on-chip memory will be built
within the pipeline

On-Chip Memories Built for Kernel Scope Variables
//kernel scope
cgh.single_task<>([=]() {
 int arr[1024];
 …
 arr[i] = …; //store to memory
 …
 … = arr[j] //load from memory
 …
} //end kernel scope

Pipeline
.
.
.
.
.
.
.
.
.

On-chip
memory
structure
for array

arr

32-bits

1024
Store

Load

29

▪ Single work-item kernels almost
always contain an outer loop

▪ Work executing in multiple stages of
the pipeline is called “pipeline
parallelism”

▪ Pipelines from real-world code are
normally hundreds of stages long

▪ Your job is to keep the
data flowing efficiently

Pipeline Parallelism for Single Work-Item Kernels

handle.single_task<>([=]() {
 … //accessor setup
 for (int i=0; i<LIMIT; i++) {
 c[i] += a[i] + b[i];
 }
});

+

Load Load

Store

30

When a dependency in a single
work-item kernel can be resolved by
creating a path within the pipeline,
the compiler will build that in.

Dependencies Within the Single
Work-Item Kernel

handle.single_task<>([=]() {
 int b = 0;
 for (int i=0; i<LIMIT; i++) {
 b += a[i];
 }
});

+

Load Load

Store

Key Concept
Custom built-in dependencies

make FPGAs powerful for
many algorithms

31

How Do I Use Tasks and Still Get Data Parallelism?

The most common technique is to unroll your loops

handle.single_task<>([=]() {
 … //accessor setup
 #pragma unroll
 for (int i=1; i<3; i++) {
 c[i] += a[i] + b[i];
 }
});

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration
3

Iteration
2

Iteration
1

32

The compiler will still pipeline an
unrolled loop, combining the two
techniques

– A fully unrolled loop will not be pipelined
since all iterations will kick off at once

Unrolled Loops Still
Get Pipelined Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration
3

Iteration
2

Iteration
1

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration
6

Iteration
5

Iteration
4

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration
9

Iteration
8

Iteration
7

handle.single_task<>([=]() {
 … //accessor setup
 #pragma unroll 3
 for (int i=1; i<9; i++) {
 c[i] += a[i] + b[i];
 }
});

33

FPGAs can run more than one kernel
at a time

– The limit to how many independent kernels
can run is the amount of resources
available to build the kernels

Data can be passed between kernels
using pipes

– Another great FPGA feature explained in
the Intel® oneAPI DPC++ FPGA
Optimization Guide

What About Task Parallelism?

Representation of Gzip FPGA example
included with the Intel oneAPI Base Toolkit

34

▪ Kernels launched parallel_for() or parallel_for_work_group() with a
NDRange/work-group size of >1

So, Can We Build These? NDRange Kernels

…//application scope

queue.submit([&](handler &cgh) {
 auto A = A_buf.get_access<access::mode::read>(cgh);
 auto B = B_buf.get_access<access::mode::read>(cgh);
 auto C = C_buf.get_access<access::mode::write>(cgh);

 cgh.parallel_for<class VectorAdd>(num_items, [=](id<1> wiID) {
 c[wiID] = a[wiID] + b[wiID];
 });

});

…//application scope

Yes, no problem,
and you will learn

to code them!

But, tasks usually
imply more optimal
pipeline structures.

The loop
optimizations are

limited for
NDRange kernels.

Development Flow for Using
FPGAs with the Intel® oneAPI
Toolkits

36

▪ FPGA Emulator target
(Emulation)

– Compiles in seconds

– Runs completely on the host

▪ Optimization report generation
– Compiles in seconds to minutes

– Identify bottlenecks

▪ FPGA bitstream compilation
– Compiles in hours

– Enable profiler to get runtime
analysis

FPGA Development Flow with oneAPI

Long Compile!!!

37

Anatomy of a Compiler Command Targeting FPGAs

dpcpp –fintelfpga *.cpp/*.o [device link options] [-Xs arguments]

Language
DPCPP = Data

Parallel C++

Target Platform

Input Files
source or object

Link Options FPGA-Specific
Arguments

38

Emulation

Get it Functional

Does my code give me the
correct answers?

39

Emulation

▪ Quickly generate x86 executables that represent the kernel

▪ Debug support for
– Standard DPC++ syntax, channels, print statements

dpcpp
Compiler

./mycode.emu
…
Running …

mycode.cpp

dpcpp -fintelfpga <source_file>.cpp –DFPGA_EMULATOR

40

Explicit Selection of Emulation Device

▪ Declare the device_selector as
type cl::sycl::intel::fpga_emulator

▪ Include fpga_extensions.hpp

▪ Include –DFPGA_EMULATOR in
your compilation command

#include <CL/sycl/intel/fpga_extensions.hpp>
using namespace cl::sycl;
...

#ifdef FPGA_EMULATOR
 intel::fpga_emulator_selector device_selector;
#else
 intel::fpga_selector device_selector;
#endif

queue deviceQueue(device_selector);
...

dpcpp -fintelfpga <source_file>.cpp –DFPGA_EMULATOR

41

Using the Static Optimization Report

Get it Optimized

Where are the bottlenecks?

42

Compiling to Produce an Optimization Report

A report showing optimization, area, and architectural information will be
produced in <file_name>.prj/reports/

– We will discuss more about the report later

dpcpp -fintelfpga <source_file>.cpp -c -o <file_name>.o
dpcpp -fintelfpga <file_name>.o -fsycl-link -Xshardware

Two Step Method:

dpcpp -fintelfpga <source_file>.cpp -fsycl-link -Xshardware
One Step Method:

The default value for –fsycl-link is -fsycl-link=early
which produces an early image object file and report

43

FPGA Bitstream Compilation

Check Runtime Behavior

Check what you can’t check
during static analysis

44

Compile to FPGA Executable with Profiler Enabled

The profiler will be instrumented within the image and you will be able to run the
executable to return information to import into Intel® Vtune Amplifier.

To compile to FPGA executable without profiler, leave off –Xsprofile.

dpcpp -fintelfpga <source_file>.cpp -c -o <file_name>.o
dpcpp -fintelfpga <file_name>.o –Xshardware -Xsprofile

Two Step Method:

dpcpp -fintelfpga <source_file>.cpp –Xshardware -Xsprofile
One Step Method:

45

Compiling FPGA Device Separately and Linking

▪ In the default case, the DPC++ Compiler handles generating the host
executable, device image, and final executable

▪ It is sometimes desirable to compile the host and device separately so
changes in the host code do not trigger a long compile

host_only.cpp

has_kernel.cpp
dpcpp -fintelfpga has_kernel.cpp –fsycl-link=image –o has_kernel.o –Xshardware

Partition code

Then run this command to compile the FPGA image:

dpcpp -fintelfpga has_kernel.cpp –c –o host_only.o
This command to produce an object file out of the host only code:

dpcpp -fintelfpga has_kernel.o host_only.o –o a.out –Xshardware
This command to put the object files together into an executable:

This is the long
compile

46

References and Resources

▪ Website hub for using FPGAs with oneAPI
– https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.

html

▪ Intel® oneAPI Programming Guide
– https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-program

ming-guide.html

▪ Intel® oneAPI DPC++ FPGA Optimization Guide
– https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimiz

ation-guide.html

▪ FPGA Tutorials GitHub
– https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials

Lab: Practice the FPGA
Development Flow

Introduction to Optimizing FPGAs
with the Intel oneAPI Toolkits

49

Agenda

▪ Reports

▪ Loop Optimization

▪ Memory Optimization

▪ Other Optimization Techniques

▪ Lab: Optimizing the Hough Transform Kernel

50

Reports

51

HTML Report

Static report showing optimization, area, and architectural
information

▪ Automatically generated with the object file
– Located in <file_name>.prj\reports\report.html

▪ Dynamic reference information to original source code

52

Optimization Report – Throughput Analysis

▪ Loops Analysis and Fmax II sections

▪ Actionable feedback on pipeline
status of loops

▪ Show estimated Fmax of each loop

53

Optimization Report – Area Analysis

Generate detailed estimated area
utilization report of kernel scope code

▪ Detailed breakdown of resources by
system blocks

▪ Provides architectural details of HW
– Suggestions to resolve inefficiencies

▪ The system view of the
Graph Viewer shows
following types of
connections
– Control

– Memory, if your design has
global or local memory

– Pipes, if your design uses
pipes

54

Optimization Report – Graph Viewer

55

Optimization Report – Schedule Viewer

▪ Schedule in clock
cycles for different
blocks in your code

56

HTML Kernel Memory Viewer

Helps you identify data movement
bottlenecks in your kernel design. Illustrates:

▪ Memory replication

▪ Banking

▪ Implemented arbitration

▪ Read/write capabilities of each memory
port

57

Profiler

▪ Inserts counters and
profiling logic into the HW
design

▪ Dynamically reports the
performance of kernels

▪ Enable using the
–Xsprofile option with
dpcpp

CCU

Load

Store

+

Load Memory Mapped
Registers

To Host

58

Collecting Profiling Data

▪ Run the executable that integrates the kernel with the profiler using

▪ A profile.json file will be produced

▪ Import the profile.json file into the Intel® Vtune™ Profiler

aocl profile -s <path/to/source>.source /path/to/host-executable

59

Importing Profile Data into Intel® Vtune™ Profiler

▪ Place the collect profile.json file in a folder by itself

▪ Open the Intel Vtune Profiler using the command vtune-gui

▪ Press the Import button at the top of the GUI

▪ Select Import raw trace data

▪ Navigate to the folder in the file browser (do not click into folder), and Open

▪ Click the Blue Import button in the GUI

60

Loop Optimization

61

Types of Kernels (Review)

▪ There are two types of kernels in Data Parallel C++
– Single work-item

– Parallel

▪ For FPGAs, the compiler will automatically detect the kind of kernel input

▪ Loop analysis will only be done for single work-item kernels

▪ Most loop optimizations will only apply to single work-item kernels

▪ Most optimized FPGA kernels are single work-item kernels

62

▪ Single work items kernels are
kernels that contain no reference
to the work item ID.

▪ Usually launched with the group
handler member function
single_task().

▪ Or, launched with other functions
and given a work-group/NDRange
size of 1.

▪ Almost always contain an outer
loop.

Single Work-Item Kernels

…//application scope

queue.submit([&](handler &cgh) {
 auto A = A_buf.get_access<access::mode::read>(cgh);
 auto B = B_buf.get_access<access::mode::read>(cgh);
 auto C = C_buf.get_access<access::mode::write>(cgh);

 cgh.single_task<class swi_add>([=]() {
 for (unsigned i = 0; i < 128; i++) {
 c[i] = a[i] + b[i];
 }
 });

});

…//application scope

63

▪ Kernels launched with the command group handler member function parallel_for() or
parallel_for_work_group() with a NDRange/work-group size of >1.

▪ Much of this section will not apply to NDRange kernels

NDRange Kernels

…//application scope

queue.submit([&](handler &cgh) {
 auto A = A_buf.get_access<access::mode::read>(cgh);
 auto B = B_buf.get_access<access::mode::read>(cgh);
 auto C = C_buf.get_access<access::mode::write>(cgh);

 cgh.parallel_for<class VectorAdd>(num_items, [=](id<1> wiID) {
 c[wiID] = a[wiID] + b[wiID];
 });

});

…//application scope

c = a + b

load a load b 11

64

Understanding Initiation Interval

▪ dpcpp will infer pipelined parallel
execution across loop iterations
– Different stages of pipeline will ideally

contain different loop iterations

▪ Best case is that a new piece of data
enters the pipeline each clock cycle

store c

n - Iteration number

…
cgh.single_task<class swi_add>([=]() {
 for (unsigned i = 0; i < 128; i++) {
 c[i] = a[i] + b[i];
 }
 });
…

c = a + b 1

load a load b 11

65

Understanding Initiation Interval

▪ dpcpp will infer pipelined parallel
execution across loop iterations
– Different stages of pipeline will ideally

contain different loop iterations

▪ Best case is that a new piece of data
enters the pipeline each clock cycle

store c

n - Iteration number

2 2

…
cgh.single_task<class swi_add>([=]() {
 for (unsigned i = 0; i < 128; i++) {
 c[i] = a[i] + b[i];
 }
 });
…

c = a + b 1

load a load b 11

66

Understanding Initiation Interval

▪ dpcpp will infer pipelined parallel
execution across loop iterations
– Different stages of pipeline will ideally

contain different loop iterations

▪ Best case is that a new piece of data
enters the pipeline each clock cycle

store c

2

1

n - Iteration number

2 23 3

…
cgh.single_task<class swi_add>([=]() {
 for (unsigned i = 0; i < 128; i++) {
 c[i] = a[i] + b[i];
 }
 });
…

67

Loop Pipelining vs Serial Execution

Serial execution is the worst case. One iteration needs to complete fully before
a new piece of data enters the pipeline.

For Begin

For End

Op 2

Op 3

Op 1

Op 2

Op 3

Op 1

i0

i1

i2

i2i2i3

i0

i1

Worst Case Best Case

68

In-Between Scenario

▪ Sometimes you must wait more than one
clock cycle to input more data

▪ Because dependencies can’t resolve fast
enough

▪ How long you have to wait is called
Initiation Interval or II

▪ Total number of cycles to run kernel is
about (loop iterations)*II
– (neglects initial latency)

▪ Minimizing II is key to performance

L = K

0

…
v

…

…

…

…

1

II = 6
6 cycles later, next
iteration enter the
loop body

69

Why Could This Happen?

▪ Memory Dependency
– Kernel cannot retrieve

data fast enough from
memory

_accumulators[(THETAS*(rho+RHOS))+theta] += increment;

Value must be retrieved from global memory
and incremented

70

What Can You Do? Use Local Memory

Transfer global memory contents to local
memory before operating on the data

…
constexpr int N = 128;
queue.submit([&](handler &cgh) {
 auto A =
 A_buf.get_access<access::mode::read_write>(cgh);

 cgh.single_task<class unoptimized>([=]() {
 for (unsigned i = 0; i < N; i++)
 A[N-i] = A[i];
 }
 });

});
…

…
constexpr int N = 128;
queue.submit([&](handler &cgh) {
 auto A =
 A_buf.get_access<access::mode::read_write>(cgh);

 cgh.single_task<class optimized>([=]() {
 int B[N];

 for (unsigned i = 0; i < N; i++)
 B[i] = A[i];

 for (unsigned i = 0; i < N; i++)
 B[N-i] = B[i];

 for (unsigned i = 0; i < N; i++)
 A[i] = B[i];
 });

});
…

Non-optimized Optimized

71

What Can You Do? Tell the Compiler About Independence

▪ [[intelfpga::ivdep]]
– Dependencies ignored for all accesses to memory arrays

▪ [[intelfpga::ivdep(array_name)]]
– Dependency ignored for only array_name accesses

[[intelfpga::ivdep(A)]]
for (unsigned i = 1; i < N; i++) {

A[i] = A[i – X[i]];
B[i] = B[i – Y[i]];

}

Dependency ignored for A array
Dependency for B still enforced

[[intelfpga::ivdep]]
for (unsigned i = 1; i < N; i++) {

A[i] = A[i – X[i]];
B[i] = B[i – Y[i]];

}

Dependency ignored for A and B array

72

Why Else Could This Happen?

r_int[k] = ((a_int[k] / b_int[k]) / a_int[1]) / r_int[k-1];

Difficult double precision floating point
operation must be completed

▪ Data Dependency
– Kernel cannot complete a

calculation fast enough

73

What Can You Do?

▪ Do a simpler calculation

▪ Pre-calculate some of the operations on the host

▪ Use a simpler type

▪ Use floating point optimizations (discussed later)

▪ Advanced technique: Increase time (pipeline stages)
between start of calculation and when you use answer
– See the “Relax Loop-Carried Dependency” in the Optimization Guide for

more information

74

The compiler will still pipeline an
unrolled loop, combining the two
techniques

– A fully unrolled loop will not be pipelined
since all iterations will kick off at once

How Else to Optimize a
Loop? Loop Unrolling Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration
3

Iteration
2

Iteration
1

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration
6

Iteration
5

Iteration
4

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration
9

Iteration
8

Iteration
7

handle.single_task<>([=]() {
 … //accessor setup
 #pragma unroll 3
 for (int i=1; i<9; i++) {
 c[i] += a[i] + b[i];
 }
});

75

Fmax

▪ The clock frequency the FPGA will be clocked at depends on what hardware
your kernel compiles into

▪ More complicated hardware cannot run as fast

▪ The whole kernel will have one clock

▪ The compiler’s heuristic is to sacrifice clock frequency to get a higher II

A slow operation can slow down your entire kernel by
lowering the clock frequency

76

How Can You Tell This Is a Problem?

Fmax II report tells you the
target frequency for each loop in
your code.

cgh.single_task<example>([=]() {
 int res = N;
 #pragma unroll 8
 for (int i = 0; i < N; i++) {
 res += 1;
 res ^= i;
 }
 acc_data[0] = res;
});

77

What Can You Do?

▪Make the calculation simpler

▪ Tell the compiler you’d like to change the trade off between
II and Fmax
– Attribute placed on the line before the loop
– Set to a higher II than what the loop currently has

[[intelfpga::ii(n)]]

78

Area

The compiler sacrifices area in order to improve loop performance. What if you
would like to save on the area in some parts of your design?

▪ Give up II for less area
– Set the II higher than what compiler result is

▪ Give up loop throughput for area
– Compiler increases loop concurrency to achieve greater throughput

– Set the max_concurrency value lower than what the compiler result is

[[intelfpga::ii(n)]]

[[intelfpga::max_concurrency(n)]]

79

Memory Optimization

80

Memory Model

▪ Private Memory
– On-chip memory, unique to

work-item

▪ Local Memory
– On-chip memory, shared within

workgroup

▪ Global Memory
– Visible to all workgroups

Kernel

Global Memory

Workgroup

Local Memory

Work-ite
m

Private
Memory

Work-ite
m

Private
Memory

Workgroup

Local Memory

Work-ite
m

Private
Memory

Work-ite
m

Private
Memory

Workgroup

Local Memory

Work-ite
m

Private
Memory

Work-ite
m

Private
Memory

Workgroup

Local Memory

Work-ite
m

Private
Memory

Work-ite
m

Private
Memory

These are the same
for single_task

kernels

81

Understanding Board Memory Resources

Memory Type Physical
Implementation

Latency
for random access

(clock cycles)

Throughput
(GB/s)

Capacity
(MB)

Global DDR 240 34.133 8000
Local On-chip RAM 2 ~8000 66

Private On-chip RAM /
Registers

2/1 ~240 0.2

Key takeaway: many times the solution for a bottleneck caused by slow
memory access will be to use local memory instead of global

82

Global Memory Access is Slow – What to Do? (4)

We’ve seen this before... This will appear as a
memory dependency problem

Transfer global memory contents to local
memory before operating on the data
…
constexpr int N = 128;
queue.submit([&](handler &cgh) {
 auto A =
 A_buf.get_access<access::mode::read_write>(cgh);

 cgh.single_task<class unoptimized>([=]() {
 for (unsigned i = 0; i < N; i++)
 A[N-i] = A[i];
 }
 });

});
…

…
constexpr int N = 128;
queue.submit([&](handler &cgh) {
 auto A =
 A_buf.get_access<access::mode::read_write>(cgh);

 cgh.single_task<class optimized>([=]() {
 int B[N];

 for (unsigned i = 0; i < N; i++)
 B[i] = A[i];

 for (unsigned i = 0; i < N; i++)
 B[N-i] = B[i];

 for (unsigned i = 0; i < N; i++)
 A[i] = B[i];
 });

});
…

Non-optimized Optimized

83

Local Memory Bottlenecks

If more load and store points want to
access the local memory than there
are ports available, arbiters will be
added

These can stall, so are a potential
bottleneck

Show up in red in the Memory Viewer
section of the optimization report

84

Local Memory Bottlenecks

Natively, the memory architecture has 2 ports

The compiler optimizes memory accesses to map to these without arbitration

Your job is to write code the compiler can optimize

Local Memory Interconnect

M20K

M20K

M20K

M20K

M20K

M20K

Kernel Pipeline

port 0

port 1

85

Double-Pumped Memory Example

Increase the clock rate to 2x

Compiler can automatically implement
double-pumped memory – turning 2 ports to 4

//kernel scope
...
 int array[1024];

 array[ind1] = val;

 array[ind1+1] = val;

 calc = array[ind2] + array[ind2+1];
…

86

Local Memory Replication Example
//kernel scope
…
 int array[1024];

int res = 0;

array[ind1] = val;
#pragma unroll
for (int i = 0; i < 9; i++)

res += array[ind2+i];

calc = res;
…

ST

LD

Turn 4 ports of double-pumped memory to unlimited ports

Drawbacks: logic resources, stores must go to each replication

Coalescing

//kernel scope
…
local int array[1024];
int res = 0;

#pragma unroll
for (int i = 0; i < 4; i++)

array[ind1*4 + i] = val;

#pragma unroll
for (int i = 0; i < 4; i++)

res += array[ind2*4 + i];

calc = res;
…

87

Continuous addresses can be
coalesced into wider accesses

88

Banking

Divide the memory into independent fractional pieces (banks)
//kernel scope
…
int array[1024][2];

array[ind1][0] = val1;
array[ind2][1] = val2;

calc = (array[ind2][0] +
 array[ind1][1]);
…

Compiler looks at lower indices by default
Indices for banking must be a power of 2 size

89

Attributes for Local Memory Optimization

Attribute Usage
numbanks [[intelfpga::numbanks(N)]]
bankwidth [[intelfpga::bankwidth(N)]]

singlepump [[intelfpga::singlepump]]
doublepump [[intelfpga::doublepump]]

max_replicates [[intelfpga::max_replicates(N)]]
simple_dual_port [[intelfpga::simple_dual_port]]

Note: This is not a comprehensive list. Consult the Optimization Guide for more.

Note: Let the compiler try on it’s own first. It’s very good at inferring an optimal structure!

90

Pipes – Element the Need for Some Memory

Create custom direct point-to-point communication between
CCPs with Pipes

CCP 1 CCP 2 CCP 3Pipe Pipe

Read
W

rit
e

Global Memory

91

Task Parallelism By Using Pipes

Launch separate kernels simultaneously

Achieve synchronization and data sharing using pipes

Make better use of your hardware

Lab: Optimizing the Hough
Transform Kernel

93

Other Optimization Techniques

94

Avoid Expensive Functions

▪ Expensive functions take a lot of hardware and run slow

▪ Examples
– Integer division and modulo (remainder) operators
– Most floating-point operations except addition, multiplication,

absolution, and comparison
– Atomic functions

95

Inexpensive Functions

▪ Use instead of expensive functions whenever possible
– Minimal effects on kernel performance

– Consumes minimal hardware

▪ Examples
– Binary logic operations such as AND, NAND, OR, NOR, XOR, and XNOR

– Logical operations with one constant argument

– Shift by constant

– Integer multiplication and division by a constant that is to the power of 2

– Bit swapping (Endian adjustment)

96

Use Least-“Expensive” Data Type

▪ Understand cost of each data type in latency and logic usage
– Logic usage may be > 4x for double vs. float operations

– Latency may be much larger for float and double operations compared to fixed point
types

▪ Measure or restrict the range and precision (if possible)
– Be familiar with the width, range and precision of data types

– Use half or single precision instead of double (default)

– Use fixed point instead of floating point

– Don’t use float if short is sufficient

97

Floating-Point Optimizations

▪ Apply to half, float and double data types

▪ Optimizations will cause small differences in floating-point results
– Not IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008) compliant

▪ Floating-point optimizations:
– Tree Balancing

– Reducing Rounding Operations

Tree-Balancing

▪ Floating-point operations are not associative
– Rounding after each operation affects the outcome

– ie. ((a+b) + c) != (a+(b+c))

▪ By default the compiler doesn’t reorder floating-point operations
– May creates an imbalance in a pipeline, costs latency and possibly area

▪ Manually enable compiler to balance operations
– For example, create a tree of floating-point additions in SGEMM, rather than a chain

– Use -Xsfp-relaxed=true flag when calling dpcpp

99

Rounding Operations

▪ For a series of floating-point operations, IEEE 754 require multiple rounding
operation

▪ Rounding can require significant amount of hardware resources

▪ Fused floating-point operation
– Perform only one round at the end of the tree of the floating-point operations

– Other processor architectures support certain fused instructions such as fused
multiply and accumulate (FMAC)

– Any combination of floating-point operators can be fused

▪ Use dpcpp compiler switch -Xsfpc

References and Resources

101

References and Resources

▪ Website hub for using FPGAs with oneAPI
– https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.

html

▪ Intel® oneAPI Programming Guide
– https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-program

ming-guide.html

▪ Intel® oneAPI DPC++ FPGA Optimization Guide
– https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimiz

ation-guide.html

▪ FPGA Tutorials GitHub
– https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials

102

Upcoming Training

These online trainings are being developed throughout 2020

▪ Converting OpenCL Code to DPC++

▪ Loop Optimization for FPGAs with Intel oneAPI Toolkits

▪ Memory Optimization for FPGAs with Intel oneAPI Toolkits

…and others!

103

Legal Disclaimers/Acknowledgements

Intel technologies’ features and benefits depend on system configuration and
may require enabled hardware, software or service activation. Performance
varies depending on system configuration. Check with your system manufacturer
or retailer or learn more at www.intel.com.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, MAX, Stratix, Cyclone,
Arria, Quartus, HyperFlex, Intel Atom, Intel Xeon and Enpirion are trademarks of
Intel Corporation or its subsidiaries in the U.S. and/or other countries.

OpenCL is the trademark of Apple Inc. used by permission by Khronos

*Other names and brands may be claimed as the property of others

© Intel Corporation

http://www.intel.com/

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.
Notice revision #20110804

Notices & Disclaimers
This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your
Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata
are available on request. No product or component can be absolutely secure. Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright ©, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the U.S.
and other countries.

104

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

