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Structure of this talk

O Why quantum computing simulations?
(O The Intel Quantum Simulator
(O Afew notions on QC and performance

considerations

() Profiling and first performance results

O Summary and outlook
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Why a QC simulator?

How to work on QC without available hardware?
Simulation is an invaluable tool for modelling classical computer systems

Simulating a quantum algorithm to better understand gates behaviour:

The access to a simulator can ease the learning process
and provide an entry point to QC.
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QC simulations on HPC systems m

e Simulating quantum circuits on classical computers is very demanding
e The size of state with the number of qubits

 The number of gates in a quantum circuit poses another
constraint on the simulation time.

Severe
on memory

Solution: running on HPC resources.
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The Intel® Quantum Simulator (IQS)

on HPC systems

Written in C++
Parallelized with MPI and OpenMP

Resources:
e Paper: https://arxiv.org/abs/2001.10554
e Github: https://github.com/iqusoft/intel-gs

Currently developed by J. Hogaboam, G.G.Guerreschi and F. Baruffa (Intel)
It simulates general single-qubit gates and two-qubit controlled gates

1QS (formerly known as gHIPSTER) is an open-source simulator of quantum circuits

@ Unwatc! h releases * | 4 W Unstar | 10

% Fork | 5

£ iqusoft / intel-gs
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https://arxiv.org/abs/2001.10554
https://github.com/iqusoft/intel-qs

Representation of single-qubit gates in 1QS

We will limit us for brevity to single-qubit
gates (controlled two-qubit gates are similar)

Vector representation: a quantum state of
a system with n qubits is represented as a
complex vector of 2" components.

|(D> = &po..0 IOOO) + oo 1 IOOI) + ... Il 11)

One can consider using more computing
nodes, each storing part of the state.

MPI Communication between nodes is
required to simulate certain quantum gates.
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A single-qubit gate acting on qubit k can be
represented as unitary transformation:

U=1I@I®.2Q®..2I1xl

where Q is a unitary matrix:

0 — ( g1 qi2 )
g1 G2z



Simple case: system of two qubits

In case of a 2-qubit system, In general:

D) = a0 [00) + ao1 [01) + @10 [10) + a1 [11) o = Q11 OOy e e+ Q12 O,

Lo g .

(Ol In case of the 2-qubit system with the gate
applied to qubit O (zero-based and from
Y01 right to left!
_ g ),
Wy =|
D @y = 1100 t q12Q01
4 ;o
./ @y = 21000 T 2201
How to write a gate operation for the aly = G110 + g2

amplitudes?
@y = q21Q10 + gna 1
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Amplitudes and strides in memory

Q2x2 (1) Q2x2 (0)

In memory, the amplitudes of the quantum o raoo )

state are stored sequentially according to
the binary representation. ol P 0
01 Qo1
Single-qubit gate operations on the qubit B Oy Oy
access the elements with stride :I P
1
a a
\_ 11 _J \_ 11 =)

Stride 0: sequential access

This Is the most crucial feature to _ | o
understand the performance of IQS! Small stride: strided access within the

memory of a given node

Larger stride: memory on different nodes
— MPI communication needed
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Performance considerations

QS is a data-intensive, memory-bound application

The memory footprint of the state grows as 2"** bytes with the problem size n
(number of qubits)

The performance of a gate operation on gqubit k depends on n and k

For simple operations, the DRAM bandwidth (or, between nodes, the network
bandwidth) is all we need to determine the maximum performance
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Scope of our work

QS has a strong focus on efficiency on modern architectures.

Following optimizations are implemented (see method paper for details):
e Vectorization via SIMD pragmas;

« Threading optimization;

 Cache blocking through gate fusion;

e Usage of the Intel® MKL library.

We want to probe mainly the MPI layer of the code, on a complex test case.

Our target system...
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Guerreschi et al. 2020

Scaling results on SuperMUC-NG

Strong scaling

Double the processes maintaining the same task.
Simulation of 1-qubit random gate

0
10 32 procs

64 procs
128 procs
256 procs
512 procs

0 5 10 15
qubit ind

e

—e— 32 procs
64 procs

—=— 128 procs
—s— 256 procs
—+— 512 procs

.

0 5 10 15 20 25 30
qubit index
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Weak scaling

Double the processes = add one qubit
Maintaining the same local size of the state vector.
Simulation of 1-qubit random gate.

—e— 4 procs / 32 qubits

16 procs / 34 qubits
—=— 64 procs / 36 qubits
—— 256 procs / 38 qubits
—=— 1024 procs / 40 qubits

w 201, 4006 procs / 42 qubits
£ 15
5
10
5
0
20 25 30 35 40
qubit index

) Each node of SuperMUC-NG is equipped with 2 socket Intel®

Xeon® Scalable Processor 8174 CPU (24 cores per socket and
96 GB DRAM per node).
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Single-node profiling: setup and test case

Quantum Fourier transform: guantum analogue of the inverse discrete Fourier
transform.

Non-trivial test case and part of many important quantum algorithms like e.g. Shor’s
factorization (quantum cryptography).

We run a system of 29 qubits (memory for the quantum state: 8GB). Both SP and DP
QFT are executed.

Initial profiling on a single node: dual socket Intel® Xeon® Scalable Processor 8174 CPU
(24 cores per socket, 96 GB DRAM per node).

Compilers and tools: Intel® Parallel Studio XE 2019.

We focus on MPI scalability and performance, because the OpenMP layer is followed by
a different project.
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MPI scaling and Application Performance Snapshot (APS)

I | 7 1
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MPI scaling not satisfactory.

Hybrid parallelisation relieves somewhat the
bottleneck on MPI.

Severe bottleneck on memory/cache stalls.

Vectorisation very good: ~ 90% of vector
Instruction. However, nearly none of them
are 512 bit-wide.

Forcing by compiler option the use of ZMM
registers does not help.

Despite of good fraction of vector
Instructions, the performance gain due to
vectorisation is 1.25x.

16



Results from Intel Advisor
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90% of runtime is spent in
MKL instructions.

65% is spent in vector
Instructions.

However, the top five
vectorized loops use only
SSE/SSE2 and AVX
Instructions

The roofline plot shows
that the code is DRAM
bound, as already
anticipated by APS.
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Summary and outlook m

 QC has a growing momentum, however the access to suitable hardware is an issue In
the community.

 |QS can be used for exploring, testing and implementing quantum algorithms, making
use of HPC resources to simulate quantum system of large size.

* This application has been developed keeping HPC performance in mind; simple gates
perform very well, while in more complex algorithms there is room for improvements.

e For the future: prepare 1QS for upcoming systems and programming models.

« QC on (pre-)Exascale machines has a potential comparable with the one of current
noisy hardware.
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Dr. Luigi lapichino Simulating quantum algorithms
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