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* NSF Center for pace, High-Performance, & Resilient Computing

• University of Pittsburgh (lead site)

• Brigham Young University

* University of Florida (UF)

• Virginia Tech

Under auspices of IUCRC Program at NSF

▪ Industry-University Cooperative Research Centers

• Fostering university, agency, & industry R&D collaborations

▪ Founded in Sep. 2017, replacing highly successful

10-year NSF CHREC Center

▪ SHREC is both National Research Center 

(universities)  and Consortium (members)
UF

Emphasis

What is SHREC?
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1. AFRL Sensors Directorate
2. AFRL Space Vehicles Directorate
3. Army Research Laboratory
4. BAE Systems
5. Ball Aerospace 
6. Boeing
7. Collins Aerospace
8. Dell
9. Draper Lab
10. Emergent Space Technologies
11. Fermilab
12. Harris
13. Honeywell 
14. Intel
15. L3 Space and Sensors
16. Laboratory for Physical Sciences
17. Lockheed Martin
18. Los Alamos National Laboratory 
19. MIT Lincoln Laboratory 
20. NASA Ames Research Center
21. NASA Goddard Space Flight Center
22. NASA IV&V Facility
23. NASA Johnson Space Center
24. NASA Kennedy Space Center
25. NASA Langley Research Center
26. National Reconnaissance Office
27. National Security Agency 
28. Naval Research Laboratory
29. Raytheon
30. Sandia National Laboratories
31. Satlantis
32. Space Micro 
33. Walt Disney Animation Studios

Center Members (2019)

http://www.nsf.gov/index.jsp
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▪ University of Pittsburgh (lead)
▪ Dr. Alan George, Mickle Chair Professor of ECE – Founder & Director

▪ Dr. Alex Jones, Professor of ECE – Associate Director

▪ Dr. Ryad Benosman, Professor of Ophthalmology and ECE 

▪ Dr. Jingtong Hu, Assistant Professor of ECE

▪ Dr. Brandon Grainger, Assistant Professor of ECE

▪ Dr. Wei Gao, Associate Professor of ECE

▪ Brigham Young University 
▪ Dr. Michael Wirthlin, Professor of ECE – Co-Director

▪ Dr. Brent Nelson, Professor of ECE

▪ Dr. Brad Hutchings, Professor of ECE

▪ Dr. Jeff Goeders, Assistant Professor of ECE

▪ University of Florida 
▪ Dr. Herman Lam, Associate Professor of ECE – Co-Director

▪ Dr. Greg Stitt, Associate Professor of ECE

▪ Dr. Ann Gordon-Ross, Associate Professor of ECE

▪ Dr. Janise McNair, Associate Professor of ECE

▪ Dr. David Ojika, Research Associate

▪ Virginia Tech 
▪ Dr. Wu Feng, Professor of ECE and CS – Co-Director

▪ Dr. Chris North, Professor of CS

Most importantly, 

SHREC features an 

exceptional team of 

students spanning our 

university sites

Center Faculty
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Heterogeneous Computing1 for Deep Learning
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▪ Deep learning becoming pervasive for mission-critical computing

▪ Heterogeneous computing1 offers unique capabilities to accelerate DNNs2

Motivation

Perform design-space exploration:

▪ Of emerging HGC1 archs/tools and DNN 2 models

▪ For acceleration of selected mission-critical apps 

Goal

Approach

Experimental platforms & tools

▪ Dell EMC server: 2x Intel Xeon Gold 6130 CPU

▪ Intel PAC Arria 10 GX FPGA

▪ Intel OpenVino Toolkit & 

Deep Learning Accelerator (DLA) suite

DNN Models from NERSC & CERN Openlab

▪ HEP-CNN

▪ CosmoGAN

▪ 3D GAN

Focus on use of FPGAs to accelerate inference stage 

of the HGC workflow

Stages of HGC workflow

▪ Data analysis & pre-processing

▪ Model training

▪ DNN inference

1 HGC: Heterogeneous Computing (CPU+GPU+FPGA)

2 DNNs: Deep Neural Networks
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Compute Cache Arch. for Data-Analytics Apps
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Explore and evaluate emerging CnM & CiM apps, archs, 

and tools for next-gen mission-critical computing
Goal

Motivation

◼ Memory bottleneck - critical for memory-intensive data-analytics apps

◼ Promise of CnM1 & CiM2 architectures and apps

Approach

1 CnM: Compute-near-Memory

Memory cache hierarchy

▪ Bring memory close to compute

▪ Near-core shared caches

▪ In-core caches 

Complementary compute cache hierarchy

▪ Bring compute close to memory 

◼ CnM compute kernels (e.g., FFT, Bloom filter) 

◼ CiM compute primitives (e.g., add, 

data-ordering ops) 

CnM compute

Compute cache hierarchy

within memory module

Mem

CiM logic 

layer

Mem

CiM logic 

layer

… (Compute
Primitives)

(Compute
Kernels)

Main Memory
Memory cache hierarchy 

within compute node

Shared caches

Core

In-core 

caches

Core

In-core 

caches

…

2 CiM: Compute-in-Memory



CnM Processing for Kernel and App Acceleration
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▪ Compute-near-Memory (CnN): Amplify

acceleration capabilities of FPGAs by 

exploiting FPGA + “near” HBM2
▪ FPGA-accelerated computation

▪ High-bandwidth, lower-latency access to HBM2 cache

Stratix 10 MX board

Stratix 10 + 16GB HBM2

(in same package)

(Available 3rd quarter 2019)

▪ FPGAs effective as accelerators for many 

data-analytics apps & kernels 
▪ As long as problem size can fit into the FPGA

Random access

▪ Bitonic sort: graph traversal

▪ BFS: graph traversal search

▪ Bloom filter: large volume of 

small random accesses

High-bandwidth cache 

▪ Very Large (VL) matrix 

multiply: dense linear 

algebra

▪ VL FFT

▪ Deep neural nets 

Apps Under Study
In development & simulation in preparation for arrival of board
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Modeling & Simulation for Notional CiM Studies
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Compute-near-Memory (only)

Ex. Stratix 10 MX board

CnM + CiM

(Notional)

Modeling & Simulation for Notional CiM Studies

CiM considerations: 

◼ Can algorithm be re-factored to 

take advantage of CnM+CiM arch?

◼ Compute primitive characteristics
◼ light-weight ops; reduces data 

transfers; limited interaction with 
compute kernel, can be pipelined with 
compute kernel ops; … what else?…

(1) Experimental prototype
▪ Implement kernel entirely in FPGA, using PR*

▪ Static region: compute kernel

▪ PR region: compute primitive(s)

(2) Benchmarking & data collection 
▪ Instrument code (both in static and PR 

regions) to collect data

(3) Model & Simulation
▪ Model data benchmarked in the PR region

(notional memory w/CiM capability)

▪ Design-space exploration using simulation** 

Approach: 

* PR: Partial Reconfiguration

** To be determined: memory simulators? 

SST (Structural Simulator Toolkit 

Sandia National Labs)?

(1) and (2)

(3)



Initial Case Study: FFT example
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❑ In terms of memory accesses (not considering any 
overhead), a reduction of 50% (4 vs. 8 memory accesses)

❑ Ongoing detailed analysis: prototype (Stratix 10 MX board), 
benchmark, model, simulation.
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FPGA Virtualization: “Overlays”

▪ FPGAs suffer from severe productivity 

bottlenecks

▪ Virtualized architectures (overlays) abstract 

away fine-grained FPGA architecture

▪ 10,000x faster compilation than vendor tools

▪ Can be paired with HLS for increased 

productivity

▪ Portability across different physical FPGAs

▪ 1000x faster reconfiguration than FPGAs

__kernel void kernel1(int *x) { …}__kernel void kernel1(int *x) { …}

* *
-

FFT

IFFT

FFT

FPGA

FFT

*
+/-

*

* **
+/- +/-+/-

FFT

IFFT*

Fast 

Place & Route

FFT

*
+/-

*

* **
+/- +/-+/-

FFT

IFFT*

Virtual 

Architecture 

(Overlay)

10,000x 

faster than 

vendor tools

High-level 

Synthesis

FPGA

__kernel void kernel1(int *x) { …}

Better 

productivity

1,000x faster 

reconfig.

Some emerging benefits

▪ Overlay for hardware security

▪ Improve clock frequency: High-frequency 

absorption-FIFO pipelining for Stratix 10 Hyperflex



SCA 
Countermeasures

Overlays for Hardware Security
▪ FPGAs susceptible to side-channel analysis (SCA) attacks

▪ Virtual architectures can protect application IP even on vulnerable FPGAs

▪ Reverse-engineered FPGA bitfile only reveals overlay, not application

▪ Proof of concept: noise generator DPA* countermeasure in overlay [MWSCAS ’17]
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if x>=0

app()

High-Level Code

HLS

FSM

× ×

+

Datapath

▪ Overall goal: integrate generic countermeasures during high-level synthesis (HLS)

▪ Allows non-experts to automatically implement secure hardware designs

Overlay Generation/ 
Selection

* DPA: Differential Power Analysis
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▪ FPGAs incur propagation delay from the reconfigurable interconnect

▪ Stratix 10 Hyperflex Architecture adds Hyper-Registers to 

interconnect to achieve higher clock frequencies

▪ Problem: Hyper-Registers do not support backpressure (i.e. 

stalls)

Improve Clock Frequency: High-Frequency
Absorption-FIFO Pipelining for Stratix 10 Hyperflex

▪ Solution: Pipelining with 

Absorption FIFOs

▪ Supports back-pressure 

with identical stall penalties 

as traditional pipelines

▪ Enables clock 

improvements in devices 

with and without Hyperflex



Results : Stratix 10
▪ Achieved an increase in clock frequency with low-area overhead

▪ Required RAM words = 2 …

▪ Maximum clock frequency increase of 196MHz, 54% improvement

▪ Average improvement of 87MHz, 17% improvement

Required RAMwords = 2ceil(log2(pipeline depth+1))

8

Goal: build clock optimizations like absorption FIFOs into overlays 

to provide performance improvements with no designer effort
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QUESTIONS


