
Performance and Scalability Analysis
of CNN-based Deep Learning Inference

in the Intel Distribution of OpenVINO Toolkit

Iosif Meyerov1, Valentina Kustikova1, Evgeny Vasilyev1,
Evgeny Kozinov1, Valentin Volokitin1,

Nadezhda Ageeva2, Yuri Gorbachev2, Zakhar Matveev2

1 Lobachevsky State University of Nizhni Novgorod, Russia
2 Intel Corporation

IXPUG Annual Conference 2019

CERN, Geneva, Switzerland September 24, 2019

Contents
• Motivation

• Objective

• DL Frameworks
– Intel Distribution of OpenVINO Toolkit

– Intel Optimization for Caffe

– OpenCV

• Models (ResNet-50, SSD-300)

• Computational infrastructure

• Numerical results

• Conclusions
2

Motivation
• Deep learning is everywhere

– Computer vision

– Natural language processing

– Bioinformatics

– Biomedicine

– …

• Deep learning is Supercomputing

– Large-scale neural networks

– Computationally intensive training

– Need of real-time inference

3 * Source of the pictures: 30 amazing applications of deep learning http://www.yaronhadad.com/deep-learning-most-amazing-applications

Deployment into
production environment
Optimizing a model for
inference & deployment

Deep Learning Lifecycle

4

MODEL

TRAINING

MODEL

VERIFICATION

INFERENCE &
DEPLOYMENT

Developing,
training and

fine-tuning of
a deep model

 Executing
inference to

verify a model
accuracy

Deep Learning Lifecycle

5

MODEL

TRAINING

MODEL

VERIFICATION

INFERENCE &
DEPLOYMENT

THIS TALK IS FOCUSED
ON DEEP LEARNING INFERENCE ON INTEL CPUs

Deep Learning Inference (1)
• Computationally intensive procedure

• Need of real-time inference in state-of-the-art applications

• Development problems:
– Code optimization is not straightforward due to the variety of topologies of

deep neural networks

– Code parallelization is not trivial due to various possible usage scenarios
(synchronous and asynchronous modes, load balancing)

6 * Source of the pictures: www.intel.com

Deep Learning Inference (2)
• Computationally intensive procedure

• Need of real-time inference in state-of-the-art applications

• User problems:
– A lot of parameters (mode, #threads, batch size, HT mode…)

– How to find the best or at least relevant combination?

7 * Source of the pictures: www.intel.com

Deep Learning Frameworks
• Three well established deep learning inference frameworks*

• Intel Optimization for Caffe
– “This optimized fork is dedicated to improving Caffe performance when

running on a CPU”

• Intel Distribution of OpenVINO Toolkit
– “The toolkit extends workloads across Intel hardware (including

accelerators) and maximizes performance”

• OpenCV
– “OpenCV was built to provide a common infrastructure for CV applications

and to accelerate the use of machine perception in the commercial
products”

8 * Ongoing work: the number of frameworks will be extended

Objective: What Is This Talk About?
• Finding optimal run parameters for DL inference in OpenVINO

• Analysis of scaling efficiency of OpenVINO using dozens of CPU
cores in different modes

• Comparison of performance of CNN-based DL inference
frameworks on Intel CPUs

• Exploring performance improvement of int8 quantization for fast
CPU inference using OpenVINO

• Exploring the results of Intel AVX512 VNNI performance
acceleration in Intel CascadeLake CPUs by means of Intel Advisor

9

OpenVINO: Main Principles
• Focuses on the developing cross-platform solutions of CV

problems based on image processing, ML, and DL

• Provides a wide range of algorithms optimized to achieve
maximum performance on the Intel hardware (CPUs, IPG,
Movidius, FPGAs…)

• Provides heterogeneous execution of algorithms on various Intel
accelerators using the same API

10

OpenVINO: What Is Inside?

OS Support: CentOS 7.4 (64 bit), Ubuntu 16.04.3 LTS (64 bit), Microsoft Windows 10
(64 bit), Yocto Project version Poky Jethro v2.0.3(64 bit), macOS 10.13 & 10.14 (64 bit)

11

OpenVINO IE: How It Works?

* Source: Intel Distribution of OpenVINO Toolkit. Deep Learning For Computer Vision

https://software.intel.com/en-us/openvino-toolkit/deep-learning-cv 12

OpenVINO IE: Execution Modes
• Inference Request contains the batch of samples
• Latency (or synchronous) mode, provides the best latency

– Supposes the next inference request is executed after the completion of
the previous one

• Throughput (or asynchronous) mode, provides the best throughput

– Assumes constructing a queue of inference requests, several requests can
be executed in parallel

13

Models
• ResNet-50

– He K., et al (2015) Deep Residual Learning for Image Recognition.
[https://arxiv.org/pdf/1512.03385.pdf]

– Image classification

– ImageNet [http://www.image-net.org]

• SSD300
– Liu W., et al (2015) SSD: Single Shot MultiBox Detector.

[https://arxiv.org/pdf/1512.02325.pdf]

– Object detection

– Pascal Visual Object Challenge [http://host.robots.ox.ac.uk/pascal/VOC]

14

Computational Infrastructure

Intel Endeavour

CPU 2x Intel Xeon Platinum 8260L 2.4GHz (2x24 cores),
TurboBoost OFF CascadeLake generation

RAM 196 GB

OS CentOS 7

Frameworks Anaconda 4.5.12
Intel Optimization for Caffe 1.1.0
OpenCV 4.1.1
Intel Distribution of OpenVINO Toolkit 2019.2

15

Experiment Setup
• Set of 1152 images from ImageNet/PASCAL VOC 2012 divided into

batches
(Batch Size is a parameter)

• Caffe, OpenCV, OpenVINO (IE, sync. mode)
– For each request its run time is measured
– The standard deviation is calculated on the set of obtained durations and

the ones that goes beyond three standard deviations relative to the mean
inference time are discarded

– Latency is a median of execution times
– FPS is the ratio of the batch size to the latency

• OpenVINO (IE, async. mode)
– FPS is the ratio of the images number to the total execution time of all

requests 16

Intel Optimization for Caffe
• Use OMP_NUM_TREADS to control #threads
• AFFINITY=compact,1,0
• 62.5% strong scaling efficiency on 48 cores, up to 450 FPS

17

OpenCV
• Use TBB_NUM_TREADS to control #threads
• AFFINITY=compact,1,0
• 46% strong scaling efficiency on 48 cores, up to 130 FPS

18

OpenVINO, IE, sync. mode
• Use plugin.set_config({'CPU_THREADS_NUM': str(thread_num)})
• AFFINITY=compact,1,0
• 62.5% strong scaling efficiency on 48 cores, up to 500 FPS!

19

Main Observations (1)
• All observations are the same for both datasets

• All frameworks scale quite well up to 48 cores (up to 62.5% strong
scaling efficiency for OpenVINO and Intel Caffe on ResNet-50)

• OpenVINO achieves the best performance in terms of FPS (up to
500 FPS on ResNet-50)

• The choice of batch size highly affects performance and scaling
efficiency, but BS = 48+ is relevant

 What about the number of cores?

20

Main Observations (2)
• What about the number of cores?

• OpenVINO IE can be executed with default settings.

 It is empirically the best choice!

21

INT8 Quantization in OpenVINO
• The Calibration tool is used according to the documentation

• Default number of threads

• Sync. mode

• Perf. improvement: 2x on ResNet-50 and 3x on SSD300.

22

INT8 Quantization. What about accuracy?
• ImageNet, validation dataset

• Classification error: top-1, top-5

• Result: accuracy is almost the same with good agreement with
the current record

23

INT8 Quantization. What about accuracy?
• PASCAL VOC 2007, test dataset (publicly available)
• PASCAL VOC 2012, validation dataset
• Object detection accuracy: mean average precision (mAP)
• Result: accuracy is almost the same

24

Use Intel Advisor
• Intel Advisor: Very useful

and insightful tool to
understand, discuss and
overcome performance
problems

• Intel Advisor tells about
the reason of
performance
improvement

25

Asynchronous mode. ResNet-50
• Maximizes throughput (and as rule minimizes total time)
• Parameter: a queue size to collect batches (Requests Count, rc)*.
• 48 threads

• Observation: ~2x speedup vs. Sync. mode in terms of total time

26 * Streams Count = Requests Count in all the experiments

Asynchronous mode. SSD300
• Minimizes throughput (and as rule total time)
• Parameter: a queue size to collect batches (Requests Count, rc).
• 48 threads

• Observation: ~1.5x speedup vs. Sync. mode in terms of total time

27

Asynchronous mode. Requests Count
• How to choose Requests count?

28

Asynchronous mode. Request Count
• How to choose Request count?

• Reasonable choice: RC is equal to the number of cores

29

Performance Comparison
• The best values of all the parameters are used

• Observation: OpenVINO IE in asynchronous mode outperforms other
frameworks

30

Conclusions
• All frameworks perform reasonably in DL reference on two model

on two 24-cores Cascade Lake CPUs but OpenVINO is better in
terms of FPS and Total time

• OpenVINO scales well up to at least 48 cores
• The async. mode in OpenVINO results in ~2x perf. Improvement
• The choice of parameters values is crucial. We recommend to use

default settings, find the batch size empirically and set RC (and SC)
to the number of cores in asynchronous mode

• INT8 calibration greatly improves performance with almost the
same accuracy

• Use Intel Advisor to understand performance of your Application
31

Contacts

Dr. Iosif Meyerov

Vice-head of the Mathematical Software and
Supercomputing Technologies department,

Lobachevsky State University of Nizhni Novgorod

meerov@vmk.unn.ru

