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Scientific computing parallelism

▶ Large amounts of data:
often cartesian multi-dimensional arrays, sometimes unstructured data

▶ Large amounts of parallelism:
each element of output array independent.

▶ No explicit threading
parallelism created by some runtime

▶ Range algorithm notion:
do some operation on each element of a dataset



Why modern C++

▶ Support for multi-D arrays
▶ ‘Range algorithms’: iteration without indices or bound checking
▶ Native support for parallelism. Ish.
▶ Libraries / language extensions for heterogeneous CPU/GPU/FPGA

computing.



Basic algorithm



Power method

Let A a matrix of interest
Let x be a random vector
For iterations until convergence

compute the product y ← Ax
compute the norm γ = ∥y∥
normalize x ← y/γ

▶ Method for computing largest eigenvalue of a matrix
▶ Also Google Pagerank
▶ Stands for many scientific codes: Krylov methods, eigenvalues



Stencil operations

· −1 ·
−1 4 −1
· −1 ·

▶ This rectangular m×n thing is the vector
▶ The 4,−1, . . . stencil is / stands for the matrix.
▶ Goes by: difference stencil, convolution, Toeplitz matrix



Array parallelism

Traditional C implementation:

1 for ( idxint i=0; i<m; i++ )
2 for ( idxint j=0; j<n; j++ )
3 out[ IINDEX(i,j,m,n,b) ] = in[ IINDEX(i,j,m,n,b) ] * factor;

1 // seq.cpp
2 #define IINDEX( i,j,m,n,b ) ((i)+b)*(n+2*b) + (j)+b

▶ Two / three-dimensional loop
▶ all dimensions large
▶ every output element independent



Reductions

ℓ2 reduction:

1 for ( idxint i=0; i<m; i++ )
2 for ( idxint j=0; j<n; j++ ) {
3 auto v = in[ IINDEX(i,j,m,n,b) ];
4 sum_of_squares += v*v;
5 }
6 return std::sqrt(sum_of_squares);

▶ Parallel except for the accumulation
▶ Obviously should not be done through atomic operation



Stencil computation

Apply stencil to each (i, j) index:

1 for ( idxint i=0; i<m; i++ ) {
2 for ( idxint j=0; j<n; j++ ) {
3 out[ IINDEX(i,j,m,n,b) ] = 4*in[ IINDEX(i,j,m,n,b) ]
4 - in[ IINDEX(i-1,j,m,n,b) ] - in[ IINDEX(i+1,j,m,n,b) ]
5 - in[ IINDEX(i,j-1,m,n,b) ] - in[ IINDEX(i,j+1,m,n,b) ];
6 }
7 }

▶ Differential operator / image convolution
▶ Structure can be more complicated in scientific codes



Implementations



Implementation 1: OpenMP parallelism

Annotate loops as parallel and/or reduction:

1 #pragma omp parallel for reduction(+:sum_of_squares)
2 for ( idxint i=0; i<m; i++ )
3 for ( idxint j=0; j<n; j++ ) {
4 auto v = in[ IINDEX(i,j,m,n,b) ];
5 sum_of_squares += v*v;
6 }
7 return std::sqrt(sum_of_squares);
8 };

▶ Static assigment of iterations to threads by default
▶ Highly controlled affinity
▶ ‘oned’ as above, ‘clps’ for both loops collapsed
▶ Can be formulated as range algorithm.



Tools: mdspan and cartesian product
Data is declared as mdspan:

1 private:
2 real *_data{nullptr};
3 md::mdspan<
4 real,
5 md::dextents<idxint,2>
6 > cartesian_data;

1 //! pointer to the data as 2D
↪→array

2 auto& data2d() {
3 return cartesian_data; };
4 const auto& data2d() const {
5 return cartesian_data; };

1 // base.cpp
2 template< typename real >
3 bordered_array_base<real>::bordered_array_base
4 ( idxint m,idxint n,int border )
5 : _m(m),_n(n),_border(border)
6 , _data( new real[ (m+2*border)*(n+2*border) ] )
7 , data_owned(true)
8 , cartesian_data
9 ( md::mdspan

10 ( _data,md::extents{m+2*border,n+2*border} )
11 )

No performance loss [?].



mdspan and cartesian product

Index range is declared as range::views::cartesian_product:

1 const auto& s = data2d();
2 int b = this->border();
3 idxint
4 lo_m = static_cast<idxint>(b),
5 hi_m = static_cast<idxint>(s.extent(0)-b),
6 lo_n = static_cast<idxint>(b),
7 hi_n = static_cast<idxint>(s.extent(1)-b);
8 range2d = rng::views::cartesian_product
9 ( rng::views::iota(lo_m,hi_m),rng::views::iota(lo_n,hi_n) );

▶ Vector allocated with size (m+2b)× (n+2b) to include border
▶ for handling of boundary conditions / halo regions in PDEs.



Implementation 2: range over indices

Range-based for loop:

1 auto array = this->data2d();
2 #pragma omp parallel for reduction(+:sum_of_squares)
3 for ( auto ij : this->inner() ) {
4 auto [i,j] = ij;
5 auto v = array[i,j];
6 sum_of_squares += v*v;
7 }
8 return std::sqrt(sum_of_squares);

▶ Range over indices, not over data
(Indices are a subset of the full data!)

▶ OpenMP can handle iterators.



Stencil operation

Most complicated operation of the bunch:

1 // span.cpp
2 auto out = this->data2d();
3 const auto in = other.data2d();
4 #pragma omp parallel for
5 for ( auto ij : this->inner() ) {
6 auto [i,j] = ij;
7 out[ i,j ] = 4*in[ i,j ]
8 - in[ i-1,j ] - in[ i+1,j ] - in[ i,j-1 ] - in[ i,j+1 ];
9 }

▶ Hard to formulate as range algorithm
▶ Performance not necessarily determined by floating point operations.



Implementation 3: Kokkos

Open Source heterogeneous execution layer

1 Kokkos::parallel_for
2 ("Update x",
3 Kokkos::MDRangePolicy<Kokkos::Rank<2>>
4 ({1, 1}, {msize-1, nsize-1}),
5 KOKKOS_LAMBDA(int i, int j) {
6 x(i, j) = Ax(i, j) / norm;
7 });

▶ Same code for CPU and GPU
▶ Implicit task queue
▶ Two-dimensional indexing
▶ Range algorithm-like philosophy



Implementation 4: Sycl

Open standard, but mostly pushed by Intel

1 q.submit([&] (handler &h) {
2 accessor D_a(Buf_a,h,write_only);
3 h.parallel_for
4 (range<2>(msize-2,nsize-2),
5 [=](auto index){
6 auto row = index.get_id(0) + 1;
7 auto col = index.get_id(1) + 1;
8 D_a[row][col] = 1.;
9 });

10 }).wait();

▶ Heterogeneous CPU/GPU code,
transparent data movement

▶ Range algorithm-like syntax,
but explicit task queue



Implementation X: ranges

1 #include <range>
2 std::ranges::for_each
3 ( std::execution::par_unseq,
4 some_container,
5 [] ( /* ... */ ) { /* ... */ }
6 );

▶ ‘Apply this point function to each element of this range’
▶ Elegant, trivially parallelized
▶ Eh . . . 1. relies too much on TBB and such: no affinity control
▶ Eh . . . 2. hard to account for the halo region
▶ Eh . . . 3. hard to express stencil operations

(although see https://www.youtube.com/watch?v=ImM7f5IQOaw)
▶ Eh . . . 4. compiler bug prevented parallel execution of the cartesian

product iterator.

https://www.youtube.com/watch?v=ImM7f5IQOaw


Tests



Comparing models (Intel)
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Intel compiler. C-style variant fastest.



Ratio to fastest (Intel)
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Comparing models (Gcc)
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Gcc compiler. less variance between variants



Ratio to fastest (Gcc)
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Where do we lose performance?

Hint: perf output on the ‘span’ variant:

1 55.60% [.]
↪→std::ranges::cartesian_product_view<std::ranges::iota_view<long,
↪→long>, std::ranges::iota_view<long, long>
↪→>::_Iterator<true>::operator+=

2 18.73% [.] __divti3
3 11.33% [.]

↪→linalg::bordered_array_span<float>::central_difference_from
4 5.37% [.]

↪→linalg::bordered_array_span<float>::scale_interior
5 5.01% [.] linalg::bordered_array_span<float>::l2norm
6 2.69% [.] __divti3@plt

Index calculations take lots of time.



GCC vs Intel

Observation:
GCC performance seems better than Intel on the 2D indexing schemes

I’m working on that.
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▶ ‘Fancy’ schemes suffer from indexing overhead
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