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Motivation
● Communication time can become bottleneck when scaling
● Overlap with computation: hide communication time
● Non-blocking MPI calls: communication is not progressing 

asynchronously
● Implementation in user code: possible, but lots of changes 

needed (e.g., calls to MPI_Test in computational loops)
● Promise of Intel MPI’s progress control:

– Progress handled internally
– No change to user code needed
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Intel MPI’s
asynchronous progress control
● Support for

– Point-to-point operations
– Blocking collectives
– Non-blocking collectives (only Ibcast, Ireduce, Iallreduce)

● Only in release_mt and debug_mt variants
● Progress threads are spawned driving the communication
● Enable with I_MPI_ASYNC_PROGRESS=1
● Control pinning with I_MPI_ASYNC_PROGRESS_PIN
● Number of progress threads per MPI rank: 

I_MPI_ASYNC_PROGRESS_THREADS
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Goals
● Evaluate Intel MPI’s asynchronous progress control 

for a real application
● Find best configuration

– Fastest time to solution → compare full-node runs
– Which combination MPI ranks & OpenMP threads fastest?
– Spare cores for progress threads necessary?
– Pinning necessary?

● Generalization to other codes
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Application: Octopus
● Density functional theory code with pseudopotentials
● Real-space grid + finite differences
● Real-time time-dependent calculations
● Hybrid parallelization (MPI + OpenMP)
● Mainly Fortran, plus some C, plus some CUDA
● Open source: octopus-code.org
● Overlap of computation & communication:

– Communication of boundary/ghost cells
– Computation of inner part of stencil
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Octopus: one time step

1

TIME_STEP

KINETIC_START VNL_START KINETIC_FINISH

GHOST_UPDATE_START INNER GHOST_UPDATE_WAIT OUTER

Gather points for 
communication

Wait for 
communication: 
MPI_Waitall

Stencil 
inner 
points

Stencil 
outer 
points

Start non-blocking 
communication: 

MPI_Irecv 
MPI_Isend

Other 
Operation

Overlap possible!

Wait for NBC: 
MPI_Wait

Start NBC : 
MPI_Iallreduce

Overlap possible!

…VNL_FINISH
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Benchmark clusters
● Cobra @ MPCDF

– CPU: Intel Xeon 6148 Gold (Skylake)
– 2x 20-core sockets/node = 40 cores/node
– Interconnect: Omnipath (100 Gbit/s)

● Raven (interim system) @ MPCDF
– CPU: Intel Xeon 9242 Platinum (Cascade lake AP)
– 2x 48-core sockets/node = 96 cores/node
– Interconnect: Infiniband HDR (100 Gbit/s)
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Example system
● Silver tip over crystal
● Periodic in x and y
● 312 Ag atoms
● 3200 orbitals
● 2.4 M grid points
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Results
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Explanations
● 3 modes

– sync: no asynchronous progress
– async: asynchronous progress threads without pinning
– async_pin: asynchronous progress threads with pinning

● Different combinations of MPI ranks x OpenMP threads 
for application
– Full node: e.g. 1x40, 2x20, 4x10, 8x5, 10x4
– Dedicated cores: e.g. 1x39, 2x19, 4x9, 8x4, 10x3

● Pinning using srun’s cpu masks
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Best combinations [cobra 40 cores/node]

11
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Best combinations [cobra 40 cores/node]

12

Dedicated cores
→ async_pin fastest

No dedicated cores
→ resource contention
if pinning enabled
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Dedicated cores needed [cobra]

Fastest runs with pinning and 
dedicated cores!
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Speed-up [cobra]

With pinning: speed-up of 
about 1.03x – 1.06x
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Scaling of fastest runs [cobra]

Good scaling: efficiency still 
84% at 128 nodes (5120 cores)
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Fastest runs [raven]

Fastest runs with pinning and 
dedicated cores!
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Speed-up [raven]

With pinning: speed-up of 
about 1.17x – 1.20x
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Scaling of fastest runs [raven]

Scaling efficiency:
74% at 128 nodes (12288 cores),
54% at 256 nodes (24576 cores)
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Quantify overlap
● Difficult due to strong imbalance in 

communication volume (strange geometry)
● Compare average time in MPI functions
● On cobra, 16 nodes:

– sync: 40.8 s of 89.7 s
– async_pin: 33.1 s of 86.8 s

→ reduction of MPI time due to overlap
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Generalization
● Stencil:

– Split in inner & outer part needed
– Benefit for other codes may be similar
– Depends on stencil size (Octopus: 25 points)

● Hybrid codes probably benefit more
– Less cores needed for progress threads
– On cobra: on most node numbers, 8x4 best combination

→ 32 cores for compute, 8 for progress threads
– Sacrificing a few cores probably ok for codes that are bound by 

memory bandwidth
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Conclusions
● Intel MPI’s asynchronous progress control allows overlap of computation 

& communication
● No change in user code needed for asynchronous progress
● Speed-up for octopus

– Up to 1.05x on cobra (40-core Skylake nodes, Omnipath)
– Up to 1.20x on raven (96-core Cascade Lake AP nodes, Infiniband)

● Lessons learned
– Use release_mt/debug_mt
– Dedicated cores needed
– Do pinning right
– Best potential for hybrid codes
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Backup slides
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Parallelization in Octopus
● Several dimensions

– k points for periodic systems
– States
– Domain

● OpenMP parallelization also over domain loops
● Cobra: 2 nodes for domain (MPI + OpenMP)

→ 80 cores
● Raven: 1 node for domain (MPI + OpenMP)

→ 96 cores
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Pinning: details
● Pinning needed for best results

– Pin MPI rank + OpenMP threads next to progress thread
● Example: 4 MPI ranks, 9 OpenMP threads

– Pin first rank to cores 0-8, second to 10-18, third to 20-28,
fourth to 30-38

– srun --cpu-bind=mask_cpu:0x1ff,0x7fc00,0x1ff00000,0x7fc0000000
– Pin progress threads to dedicated cores 9, 19, 29, 39
– export I_MPI_ASYNC_PROGRESS_PIN=9,19,29,39

● Slurm CPU mask:
– Hexadecimal number, binary representation → enabled cores
– 0x7fc00 = 0b1111111110000000000 (cores 10 to 18)
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● Real-space grid for FD
● Complicated shape 

possible, e.g. molecules

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory 
Comput. (2013), 9, 10, 4360-4373

Data layout
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● Real-space grid for FD
● Complicated shape 

possible, e.g. molecules
● Cache-aware mapping to 

1D array

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory 
Comput. (2013), 9, 10, 4360-4373

Data layout
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● Real-space grid for FD
● Complicated shape 

possible, e.g. molecules
● Cache-aware mapping to 

1D array
● 1D data layout: 2 blocks

– Interior points
– Boundary/ghost points

Interior Boundary

Interior

Boundary

Boundary

B
ou

nd
ar

y B
oundary

Data layout
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Orbital 1

Mesh index

Orbital 2

...1 2 3

...1 2 3

...1 2 3

...1 2 3

Orbital 3

Orbital 4

Unpacked layout

M
es

h 
in

de
x

Packed layout
Orbital index

1 1 1 1

2 2 2 2

3 3 3 3

...

Data layout II: batches
● Aggregate several 

orbitals into one 
batch

● Operations done 
over batches

● 2 layouts:
– Unpacked
– Packed → 

vectorization, GPUs
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Best combinations [cobra]
Nodes sync async async_pin

16 8x5 4x10 4x9

32 8x5 4x10 8x4

64 8x5 4x10 8x4

128 8x5 4x10 8x4
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Speed-up: zoom in [cobra]

With pinning: speed-up of 
about 1.03x – 1.06x
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Speed-up: zoom in [raven]

With pinning: speed-up of 
about 1.17x – 1.20x
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