
Overlapping
communication and computation 
using the Intel MPI library's
asynchronous progress control

Sebastian Ohlmann (Max Planck Computing and Data Facility, Garching)

Fabio Baruffa (Intel)

Markus Rampp (Max Planck Computing and Data Facility, Garching)

IXPUG Meeting, 13.-16.10.2020



2/21Asynchronous progress control with Intel MPI

Motivation
● Communication time can become bottleneck when scaling
● Overlap with computation: hide communication time
● Non-blocking MPI calls: communication is not progressing 

asynchronously
● Implementation in user code: possible, but lots of changes 

needed (e.g., calls to MPI_Test in computational loops)
● Promise of Intel MPI’s progress control:

– Progress handled internally
– No change to user code needed



3/21Asynchronous progress control with Intel MPI

Intel MPI’s
asynchronous progress control
● Support for

– Point-to-point operations
– Blocking collectives
– Non-blocking collectives (only Ibcast, Ireduce, Iallreduce)

● Only in release_mt and debug_mt variants
● Progress threads are spawned driving the communication
● Enable with I_MPI_ASYNC_PROGRESS=1
● Control pinning with I_MPI_ASYNC_PROGRESS_PIN
● Number of progress threads per MPI rank: 

I_MPI_ASYNC_PROGRESS_THREADS



4/21Asynchronous progress control with Intel MPI

Goals
● Evaluate Intel MPI’s asynchronous progress control 

for a real application
● Find best configuration

– Fastest time to solution → compare full-node runs
– Which combination MPI ranks & OpenMP threads fastest?
– Spare cores for progress threads necessary?
– Pinning necessary?

● Generalization to other codes



5/21Asynchronous progress control with Intel MPI

Application: Octopus
● Density functional theory code with pseudopotentials
● Real-space grid + finite differences
● Real-time time-dependent calculations
● Hybrid parallelization (MPI + OpenMP)
● Mainly Fortran, plus some C, plus some CUDA
● Open source: octopus-code.org
● Overlap of computation & communication:

– Communication of boundary/ghost cells
– Computation of inner part of stencil



6/21Asynchronous progress control with Intel MPI

Octopus: one time step

1

TIME_STEP

KINETIC_START VNL_START KINETIC_FINISH

GHOST_UPDATE_START INNER GHOST_UPDATE_WAIT OUTER

Gather points for 
communication

Wait for 
communication: 
MPI_Waitall

Stencil 
inner 
points

Stencil 
outer 
points

Start non-blocking 
communication: 

MPI_Irecv 
MPI_Isend

Other 
Operation

Overlap possible!

Wait for NBC: 
MPI_Wait

Start NBC : 
MPI_Iallreduce

Overlap possible!

…VNL_FINISH



7/21Asynchronous progress control with Intel MPI

Benchmark clusters
● Cobra @ MPCDF

– CPU: Intel Xeon 6148 Gold (Skylake)
– 2x 20-core sockets/node = 40 cores/node
– Interconnect: Omnipath (100 Gbit/s)

● Raven (interim system) @ MPCDF
– CPU: Intel Xeon 9242 Platinum (Cascade lake AP)
– 2x 48-core sockets/node = 96 cores/node
– Interconnect: Infiniband HDR (100 Gbit/s)



8/21Asynchronous progress control with Intel MPI

Example system
● Silver tip over crystal
● Periodic in x and y
● 312 Ag atoms
● 3200 orbitals
● 2.4 M grid points

x [Å]

10
5

0
5

10

y [Å
]

10
5

0
5

10

z [
Å]

10

5

0

5

10



9/21Asynchronous progress control with Intel MPI

Results



10/21Asynchronous progress control with Intel MPI

Explanations
● 3 modes

– sync: no asynchronous progress
– async: asynchronous progress threads without pinning
– async_pin: asynchronous progress threads with pinning

● Different combinations of MPI ranks x OpenMP threads 
for application
– Full node: e.g. 1x40, 2x20, 4x10, 8x5, 10x4
– Dedicated cores: e.g. 1x39, 2x19, 4x9, 8x4, 10x3

● Pinning using srun’s cpu masks



11/21Asynchronous progress control with Intel MPI

Best combinations [cobra 40 cores/node]

11



12/21Asynchronous progress control with Intel MPI

Best combinations [cobra 40 cores/node]

12

Dedicated cores
→ async_pin fastest

No dedicated cores
→ resource contention
if pinning enabled



13/21Asynchronous progress control with Intel MPI

Dedicated cores needed [cobra]

Fastest runs with pinning and 
dedicated cores!



14/21Asynchronous progress control with Intel MPI

Speed-up [cobra]

With pinning: speed-up of 
about 1.03x – 1.06x



15/21Asynchronous progress control with Intel MPI

Scaling of fastest runs [cobra]

Good scaling: efficiency still 
84% at 128 nodes (5120 cores)



16/21Asynchronous progress control with Intel MPI

Fastest runs [raven]

Fastest runs with pinning and 
dedicated cores!



17/21Asynchronous progress control with Intel MPI

Speed-up [raven]

With pinning: speed-up of 
about 1.17x – 1.20x



18/21Asynchronous progress control with Intel MPI

Scaling of fastest runs [raven]

Scaling efficiency:
74% at 128 nodes (12288 cores),
54% at 256 nodes (24576 cores)



19/21Asynchronous progress control with Intel MPI

Quantify overlap
● Difficult due to strong imbalance in 

communication volume (strange geometry)
● Compare average time in MPI functions
● On cobra, 16 nodes:

– sync: 40.8 s of 89.7 s
– async_pin: 33.1 s of 86.8 s

→ reduction of MPI time due to overlap



20/21Asynchronous progress control with Intel MPI

Generalization
● Stencil:

– Split in inner & outer part needed
– Benefit for other codes may be similar
– Depends on stencil size (Octopus: 25 points)

● Hybrid codes probably benefit more
– Less cores needed for progress threads
– On cobra: on most node numbers, 8x4 best combination

→ 32 cores for compute, 8 for progress threads
– Sacrificing a few cores probably ok for codes that are bound by 

memory bandwidth



21/21Asynchronous progress control with Intel MPI

Conclusions
● Intel MPI’s asynchronous progress control allows overlap of computation 

& communication
● No change in user code needed for asynchronous progress
● Speed-up for octopus

– Up to 1.05x on cobra (40-core Skylake nodes, Omnipath)
– Up to 1.20x on raven (96-core Cascade Lake AP nodes, Infiniband)

● Lessons learned
– Use release_mt/debug_mt
– Dedicated cores needed
– Do pinning right
– Best potential for hybrid codes



22/21Asynchronous progress control with Intel MPI

Backup slides



23/21Asynchronous progress control with Intel MPI

Parallelization in Octopus
● Several dimensions

– k points for periodic systems
– States
– Domain

● OpenMP parallelization also over domain loops
● Cobra: 2 nodes for domain (MPI + OpenMP)

→ 80 cores
● Raven: 1 node for domain (MPI + OpenMP)

→ 96 cores



24/21Asynchronous progress control with Intel MPI

Pinning: details
● Pinning needed for best results

– Pin MPI rank + OpenMP threads next to progress thread
● Example: 4 MPI ranks, 9 OpenMP threads

– Pin first rank to cores 0-8, second to 10-18, third to 20-28,
fourth to 30-38

– srun --cpu-bind=mask_cpu:0x1ff,0x7fc00,0x1ff00000,0x7fc0000000
– Pin progress threads to dedicated cores 9, 19, 29, 39
– export I_MPI_ASYNC_PROGRESS_PIN=9,19,29,39

● Slurm CPU mask:
– Hexadecimal number, binary representation → enabled cores
– 0x7fc00 = 0b1111111110000000000 (cores 10 to 18)



25/21Asynchronous progress control with Intel MPI

● Real-space grid for FD
● Complicated shape 

possible, e.g. molecules

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory 
Comput. (2013), 9, 10, 4360-4373

Data layout



26/21Asynchronous progress control with Intel MPI

● Real-space grid for FD
● Complicated shape 

possible, e.g. molecules
● Cache-aware mapping to 

1D array

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory 
Comput. (2013), 9, 10, 4360-4373

Data layout



27/21Asynchronous progress control with Intel MPI

● Real-space grid for FD
● Complicated shape 

possible, e.g. molecules
● Cache-aware mapping to 

1D array
● 1D data layout: 2 blocks

– Interior points
– Boundary/ghost points

Interior Boundary

Interior

Boundary

Boundary

B
ou

nd
ar

y B
oundary

Data layout



28/21Asynchronous progress control with Intel MPI

Orbital 1

Mesh index

Orbital 2

...1 2 3

...1 2 3

...1 2 3

...1 2 3

Orbital 3

Orbital 4

Unpacked layout

M
es

h 
in

de
x

Packed layout
Orbital index

1 1 1 1

2 2 2 2

3 3 3 3

...

Data layout II: batches
● Aggregate several 

orbitals into one 
batch

● Operations done 
over batches

● 2 layouts:
– Unpacked
– Packed → 

vectorization, GPUs



29/21Asynchronous progress control with Intel MPI

Best combinations [cobra]
Nodes sync async async_pin

16 8x5 4x10 4x9

32 8x5 4x10 8x4

64 8x5 4x10 8x4

128 8x5 4x10 8x4



30/21Asynchronous progress control with Intel MPI

Speed-up: zoom in [cobra]

With pinning: speed-up of 
about 1.03x – 1.06x



31/21Asynchronous progress control with Intel MPI

Speed-up: zoom in [raven]

With pinning: speed-up of 
about 1.17x – 1.20x


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	page11 (1)
	page11 (2)
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	page24 (1)
	page24 (2)
	page24 (3)
	Slide 28
	Slide 29
	Slide 30
	Slide 31

