
1

Optimizing beyond vectorization and

parallelization : A case study on QMCPACK

Cédric Valensi, Emmanuel Oseret, William Jalby, Mathieu Tribalat, Kevin Camus,

Youenn Lebras (UVSQ/ECR)

cedric.valensi@uvsq.fr , emmanuel.oseret@uvsq.fr, william.jalby@uvsq.fr,

mathieu.tribalat@uvsq.fr, kevin.camus@uvsq.fr

Othman Bouizi, Jeongnim Kim, David Wong, David Kuck, Victor Lee (INTEL)

othman.bouizi@intel.com, jeongnim.kim@intel.com, david.c.wong@intel.com,

david.kuck@intel.com, victor.w.lee@intel.com

http://www.maqao.org

With ECR, INTEL, CEA and UVSQ support

MAQAO Performance Analysis and

Optimization Tool

mailto:cedric.valensi@uvsq.fr
mailto:emmanuel.oseret@uvsq.fr
mailto:william.jalby@uvsq.fr
mailto:mathieu.tribalat@uvsq.fr
mailto:kevin.camus@uvsq.fr
mailto:othman.bouizi@intel.com
mailto:jeongnim.kim@intel.com
mailto:david.c.wong@intel.com
mailto:david.kuck@intel.com
mailto:victor.w.lee@intel.com
http://www.maqao.org/

2

OUR VIEW: SYST = Arch + App CENTRIC VIEW

Instead of only pinpointing problems, try to guide the user towards

a few solutions.

STARTING POINT: the user has at his disposal a given number of

code transformations.

OUR VIEW:
 What type of problems are we facing ?? CPU or data access

problems
 What transformations to apply?? a few key transformations are

targeted: compiler switches, partial/full vectorization, loop
blocking/array restructuring, if removal, binary transforms.

 How to apply transformations ?? Through the use of compiler
directives or code restructuring (ASSIST) but under user
responsibility

MAQAO Performance Analysis and

Optimization Tool

3

OUR VIEW: APPLICATION CENTRIC VIEW (2)

OUR VIEW:
 Where to apply transformations ?? Find the most rewarding loops

and issues to be fixed.

A simple example

• Loop A: 40% total time, expected 10% speedup
  TOTAL IMPACT: 4% speedup

• Loop B: 20% total time, expected 50% speedup
  TOTAL IMPACT: 10% speedup

=> Need for tools capable of evaluating performance gains related

to transformations: evaluation of What if Scenarios.

 The user wants to optimize for several data sets,
configurations, parallelization parameters (number of
ranks/threads), and find tradeoffs: automatically run and
aggregate performance numbers with varying number of cores,
different datasets, etc…

MAQAO Performance Analysis and

Optimization Tool

4

OUR VIEW:ADDITIONAL CHARACTERISTICS

How much can the user trust our recommendations ??

Provide the user with quality indicators on measurement
 For example, measuring too short durations within an OoO

machine is not meaningful: any duration measured under 500
cycles is subject to caution. Any duration measured under 250
cycles is close to noise.

Hardware performance counters can be very helpful but hard to

use

THE WRONG WAY OF USING HW COUNTERS: provide the user with

useless, symptomatic not causal info/metrics such as Instructions per

Cycle or Cache misses

THE GOOD WAY OF USING COUNTERS: aggregate counters to build

meaningful metrics which can be related to source code such as cache

and memory traffic

MAQAO Performance Analysis and

Optimization Tool

5

Our Approach : Analysis at Binary Level

 Advantages of binary analysis:

• Compiler optimizations increase the distance between the

executed code and the source

• Source code instrumentation may prevent the compiler from

applying some transformations
 We want to evaluate the “real” executed code: What You Analyze Is

What You Run

Talk organization
• Description of two key MAQAO modules (CQA and DECAN)
• Experimental results obtained on QMCPACK
• QMCPACK Optimization

MAQAO Performance Analysis and

Optimization Tool

6

EXPERIMENTAL SETUP

 TARGET APPLICATION QMCPACK:

 NiO ECP Benchmark Suite

 COMPILER: Intel 19.0.1.144

 MKL: Intel 2019.1.144

 Unicore runs except when specified.

 HARDWARE:
 Haswell: Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

 Skylake, Intel(R) Xeon(R) Platinum 8170 CPU @ 2.10GHz

MAQAO Performance Analysis and

Optimization Tool

an open-source, C++, high-performance

electronic structure code that implements

numerous Quantum Monte Carlo

algorithms.

http://www.qmcpack.org

http://www.qmcpack.org/

7

MAQAO CQA Main Concepts

 Relies on simplified CPU model

• Allows faster analyses
 Machine model:

• Execution pipeline

• Port throughput

• L1 data access additional L2/L3/RAM models)

• Buffer size assumed infinite
 Key performance levers for core level efficiency:

• Vectorizing

• Avoiding high latency instructions if possible

• Having the compiler generate efficient code

• Reorganizing memory layout
 More realistic performance model with UFS: precise internal

architecture including buffer size.

MAQAO Performance Analysis and

Optimization Tool

Same instruction – Same cost

Process up to

8X (SP) data

8

“WHAT IF” SCENARIOS: VECTORIZATION

 Code “Clean”

• Generate an Assembly “Clean” variant : keep only FP Arithmetic

and Memory operations, suppress all other

• Generate a CQA Performance estimate on the “Clean” Variant
 Code “FP Vector”

• Generate an Assembly “FP Vector” variant : only replace scalar

FP Arithmetic by Vector FP Arithmetic equivalent. Generate

additional instructions to fill in Vector Registers.

• Generate a CQA Performance estimate
 Code “Full Vector”

• Generate an Assembly “Full Vector” variant : replace both scalar

FP Arithmetic and FP Load/Store by their Vector equivalent.

• Generate a CQA Performance estimate
 All of these “What If Scenarios” are generated in a fully static

manner.

MAQAO Performance Analysis and

Optimization Tool

9

ONE VIEW : GLOBAL APPLICATION VIEW (3)

MAQAO Performance Analysis and

Optimization Tool

On the X Axis, loops are sorted by coverage.

The Y AXIS represents cumulative speedup on the whole application

The 7 hottest loops are

perfectly vectorized

10

DETAILED ANALYSIS OF WHAT IF FULL VECTORIZED

MAQAO Performance Analysis and

Optimization Tool

On the X Axis, loops are sorted by potential gain on the whole application.

The Y AXIS represents cumulative speedup on the whole application

Limited performance gain:

at most 1% per loop

11

MAQAO DECAN: Decremental Analysis

 Goal: modify the application to

• Identify causes of bottlenecks

• Measure associated ROI (Return On Investment)

 Differential analysis:

• Target innermost loops

• Transform loops: generate different binary variants of the

original loops

• Measure and compare original loop performance with modified

variants

 Transformations

• Remove or modify groups of instructions

• Target memory accesses or computations

• Binary variants generate “wrong results”: we don’t care, and

writes systematically protected to preserve memory state

MAQAO Performance Analysis and

Optimization Tool

12

MAQAO DECAN Transformations

Typical transformations/variants:

 FP: only FP arithmetic instructions are preserved

 => loads and stores are removed

 LS: only loads and stores are preserved

 => compute instructions are removed

Comparing T(FP) (Time spent in FP variant) and T(LS) (Time spent in LS variant)

allows us to quantify how much a loop is CPU bound versus data access bound

 DL1: memory references replaced with constant memory address

 => for loops, data now accessed from L1: precise impact of perfect

blocking

 PSOR/PVLOR: add software prefetch instructions on vector loads/stores

 S2L: stores are replaced by loads

 => for loops, no more coherency actions so evaluation of coherency

cost blocking

MAQAO Performance Analysis and

Optimization Tool

13

DETAILED ANALYSIS OF WHAT IF L1 BLOCKING

MAQAO Performance Analysis and

Optimization Tool

On the X Axis, loops are sorted by potential gain on the whole application.

The Y AXIS represents cumulative speedup on the whole application

A single loop has a potential of 30%

gain on the whole application

14

ONE VIEW: EXPERT VIEW, DECAN VARIANTS (1)

MAQAO Performance Analysis and

Optimization Tool

COLOR CODE: RED : duration less than 250 Cycles, ORANGE: Duration

less than 500 cycles

STABILITY ANALYSIS: STA = (Median – Min)/Min

Indicates major bottleneck: CPU

bound versus data access bound

15

QPLOT

From measurements of specific HW events, QPLOT
 Builds the traffic for each memory level (L1, L2, L3, RAM)
 Compares measurement with static info gathered by CQA
 Computes and plots Data rate access versus Mflops rate. Generates Intensity

(Bytes per flop) values for each codelet and for each memory level
 Performs codelet classification according to intensity to drive/suggest potential

code optimization.

MAQAO Performance Analysis and

Optimization Tool

16

QMCPACK: OUR ASSESSMENT

MAQAO Performance Analysis and

Optimization Tool

Excellent Vectorization:

limited potential

performance gain

Very good quality of the

generated code

Data access needs

optimization

Control Flow needs

optimization

17

QMCPACK: LOOKING AT BRANCHES

MAQAO Performance Analysis and

Optimization Tool

Loops with a very large number of

paths: issues with control flow/branch

18

OPTIMIZING BRANCHES

ISSUE: CQA detected a large number of paths in a few loops. These

loop were perfectly vectorized but the compiler generated a very

complex control flow around the vector instructions. The source code

contained a loop nest (7 iterations) annotated with a full unroll directive.

Unfortunately, the compiler did not use this directive and generated a

very complex control flow.

SOLUTION (Variant called FU: Full Unroll): Instead of relying on a

compiler directive, fully unroll by hand the loop nest that caused trouble

for the compiler.

PERFORMANCE GAIN:

 On Haswell , between 1,11x and 1,51x speedup at loop level

and between 1,05x and 1,08x at application level

 On Skylake, between 1,47x and 1,75x speedup at loop level and

between 1,07x and 1,09x at application level

MAQAO Performance Analysis and

Optimization Tool

19

POOR QUALITY CODE

ISSUE: CQA detected: large number of stack access, unbalanced port

usage due to the presence of “special” instructions, partial vectorization.

In fact the loop body was too large and overwhelmed compiler

optimization capacities.

SOLUTION (Variant called SPLIT): Split the loop to reduce the loop

complexity to a level which could be managed by the compiler.

PERFORMANCE GAIN:

 On Haswell , between 1,13x and 1,35x speedup at loop level

and 1,01x at full application level

 On Skylake, between 1,25x and 1,58x speedup at loop level and

1,01x at full application level

MAQAO Performance Analysis and

Optimization Tool

20

OPTIMIZING DATA ACCESS

ISSUE: QPLOT detected: large amount of L1 traffic. DECAN indicated

strong potential benefit for traffic reduction.

SOLUTION (Variant called FUME): A surrounding loop provided some

data reuse which was exploited by Unroll and Merge.

PERFORMANCE GAIN:

 On Haswell, between 1,6x and 2,51x speedup at loop level and

1,06x and 1,08x at application level.

 On Skylake, between 2,6x and 2,9x speedup at loop level and

around 1,2x at application level

MAQAO Performance Analysis and

Optimization Tool

21

AGGREGATING ALL OPTIMIZATIONS

OPTIMIZING FURTHER

Using DECAN to explore impact of software prefetch instructions.

PERFORMANCE GAIN:

On Haswell, additional 4% performance gain.

On Skylake, additionnal 3% performance gain.

MAQAO Performance Analysis and

Optimization Tool

Machine Data Set ORIG FU FU + SPLIT FU + SPLIT + FUME

Haswell Small 1 1.08 1.09 1.17

Haswell Medium 1 1.05 1.06 1.12

Skylake Small 1 1.09 1.10 1.33

Skylake Medium 1 1.07 1.08 1.29

22

ONE VIEW: ANALYZING MPI + OPENMP

MAQAO Performance Analysis and

Optimization Tool

PERFORM AUTOMATICALLY MULTIPLE RUNS: variation on the

number of threads and computes efficiency.

STRONG SCALING AND WEAK SCALING

QMCPACK: Monte Carlo nature of the algorithm induces

“Embarrassingly Parallel” code. Efficiency loss is due to contention.

23

WRAP UP

 Optimizing (complex) for complex recent architectures is becoming
more and more difficult

 We need a new generation of performance tools to guide the
code/developer through that task

 MAQAO/ONE VIEW provides a new approach

• Provides an application centric view

• Provides synthetic/aggregated view meaningful for the user

• Provides performance estimates of potential gains (what if

scenarios)
 Main lesson learned through QMCPACK optimization: it is of major

importance of fully understand the full code structure not only
vectorization/parallelization.

 More analyses to be done : in particular, more what if scenarios for
studying parallelism (MPI, OpenMP), branch impact,

MAQAO Performance Analysis and

Optimization Tool

24

Thanks for your attention!

Questions ?

MAQAO Performance Analysis and

Optimization Tool

