
Optimize for both memory and compute
on modern Hardware
Using Roofline model automation in intel ® Advisor

Cedric Andreolli, Sr. Support engineer, Intel IAGS
Zakhar Matveev, Product architect, Intel IAGS
October 10th 2019

2

Acknowledgments

Cedric Andreoli (Intel),

Sam Williams (LBNL), Aleksandar Ilic (INESC),

Kate Antakova (Intel), Philippe Thierry (Intel)

The Roofline Model

𝑎𝑖 = 𝑏𝑖 + 𝑐𝑖 ∗ 𝑑𝑖

Flop: How many FP
operations is your
kernel performing

Byte transferred: How
many bytes need to

be transferred

2 Operations

1W+3R = 4*4bytes = 16 bytes

Performance is expressed in Flop/s
• Number of operations per second
• We usually want to maximize this number

Arithmetic intensity
• Ratio between flops and bytes
• Directly impacts the performance

(memory bound/compute bound)

Building a Roofline Model

Roofline model is based on the formula

Roofline Axis

• Vertical axis is the performance
in Gflop/s

• Horizontal axis is the arithmetic
intensity (Flop/Byte)

• Using log scales

Gflop/s= 𝒎𝒊𝒏 ቊ
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑷𝑬𝑨𝑲
𝑷𝒍𝒂𝒕𝒇𝒐𝒓𝒎 𝑩𝑾 ∗ 𝑨𝑰

Gflops/s
Optimize memory access

Vectorization + threading

Flops/Byte

Old approach – pen and paper to get Roofline data

5

Run STREAM

Run DGEMM

4 loads

1 store

27 muls

51 adds

“3D stencil performance evaluation and auto-tuning on multi and many-core computers”, C.Andreolli et.al.

Read the source,
count FP ops,
loads&stores

Cumbersome – but people still did it!

6

(“Cache-aware”) Roofline Automation ,
since 2016

Each Dot
represents loop or function in
YOUR APPLICATION (profiled)

Each Roof (slope)
Gives peak CPU/Memory throughput
of your PLATFORM (benchmarked)

Automatic and integrated – first class citizen in Intel® Advisor

Questions to answer with Roofline: for your loops / functions

Memory-bound, invest into cache
blocking etc

Compute bound: invest into
SIMD,..

Final Bottleneck?

(where will be my limit after I done all optimizations?)
Long-term ROI, optimization strategy

Big optimization gap.
Platform underutilization.

Am I doing well? How far am I from the
pick?

(do I utilize hardware well or not?)

1
2

The Roofline Model in Intel® Advisor

First Implementation: Cache-Aware Roofline Model (CARM)

• Based on instrumentation

• 2 runs: one for sampling and timing loops and functions (low overhead); second one for
instrumentation

• Algorithmic version of the Roofline Model, optimization usually does not impact AI

• ☺ Really powerful to characterize an algorithm

•  Not always easy to find your current #1 bottleneck

Additional Implementation: Integrated or « mutli-level » Roofline Model (IRM)

• Based on cache simulation, evaluate the traffic between each memory subsystem
(L1/L2/LLC/DRAM)

• ☺ Incorporates the « original Roofline model », provides meaningful information for the #1
bottleneck improvement

•  Requires more time to run and more visual aids to comprehend

Currently exposed as a technical
preview feature, need:

export
ADVIXE_EXPERIMENTAL=int_roofline

Performance is limited by
minimum of intercepts:

- L1,
- L2,
- LLC,
- DRAM,
- CPU

In this case: by DRAM

9

Peak Flop/s

A
tt

a
in

a
b

le
 F

lo
p

/s

Arithmetic Intensity (Flop:Byte)

Integrated Roofline. What is my current limit? 3

Hierarchical Roofline for one kernel

Getting Roofline profile

11

Running roofline collection

• Simple click or single command
• Two collections are launched one after another

• Low-overhead sampling to get execution times
• Binary instrumentation for FLOPs and traffic

• Roofs are obtained via benchmarks

GUI Command line

> source advixe-vars.sh
> advixe-cl -collect roofline -project-dir <advisor project>
-- <your app>

12

Roofline collection – advanced

> advixe-cl -project-dir <your project> -collect survey -- <your app>
> advixe-cl -project-dir <your project> -collect tripcounts -- <your app>

Launch two collections explicitly – may be required for MPI

Customize cache configuration

> advixe-cl -project-dir <your project> -collect roofline
--cache-config 4:1024k:32w -- <your app>

• “What if” analysis/projection
• More info in backup slides

$ source advixe-vars.sh

$ export ADVIXE_EXPERIMENTAL=int_roofline

1st method. Not compatible with MPI applications :

$ advixe-cl -collect roofline -enable-cache-simulation --project-dir
./your_project -- <your-executable-with-parameters>

2nd method (compatible with MPI applications and more flexible):

$ advixe-cl -collect survey --project-dir ./your_project -- <your-executable-with-

parameters>

$ advixe-cl -collect tripcounts -enable-cache-simulation -flop --project-dir

./your_project -- <your-executable-with-parameters>

(optional) copy data to your UI desktop system

$ advixe-gui ./your_project

IRM How-to: https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

13

How to generate IRM Roofline profile?*

https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor

14

Chart configuration
Select which

operations are
counted

Select memory
levels

Select only loads
or stores

Aggregate data
over calltree

(currently works
only for CARM,
not integrated

roofline!)

Use “Code Analytics” in conjunction with Roofline

16

Exporting Integer and Integrated Roofline as HTML

Command line:

export
ADVIXE_EXPERIMENTAL=int_roofline

advixe-cl –report roofline
-data-type=float
-memory-level=L2
-memory-operation-type=load
-project-dir /path/to/project/dir

Possible
data types: float, int, mixed
memory levels: L1, L2, L3, DRAM
memory operation types: load, store, all

GUI: Use Export as HTML button

• Export Roofline from command line does not need GUI sub-system on clusters
• Useful for rooflines quick exchange

17

Roofs configuration
(and more…)

Hide or highlight
the roofs

Change hotspot
classification

Edit values
manually

(if needed)

Customize roof calculation:
• Fully loaded system

assumed by default
• Tick if most cores are

idle

Choose dots
coloring strategy

(vector-vs-scalar or
slow-vs-fast)

18

Compare results
Loaded results for

two versions

Current version
(highlighted)

Previous version

Easy to check optimization progress

19

Share with others

Snapshot (full-
featured, opens in

Advisor)

Standalone interactive HTML
(limited functionality)

Share roofline by email! - with
colleagues or your manager

20

A few words about callstacks

Same function,
same loop…

But different
FLOPS and AI
on different
callpaths!

Collecting callstacks we can

• See aggregated dots
• Callees and inner loops included

• See different dots for different callchains

Available in current product version, does not work with hierarchical roofline yet

Python API

• Fairly new Advisor Extensibility/customization mechanism. Actively used
internally in Intel

• Up to 500 metrics for each loop/function. Really easy to use:

• <advisor_install_dir>/pythonapi/examples

• $python survey_bottomup.py <project_dir>

• Generate your own customized roofline charts

21

From ISC’18 paper
(cudos Tuomas)

