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Audience Survey
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Audience Survey

® Who is using OpenCL in a real-world code?

® . ..What are you using instead?
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The Situation with Scientific HPC

e tons of legacy code (FORTRAN) authored by domain experts

= rather closed community
= decoupled from computer science (ask a CS student about FORTRAN)

® highly conservative code owners
= modern software engineering advances are picked up very slowly
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The Situation with Scientific HPC

e tons of legacy code (FORTRAN) authored by domain experts

= rather closed community
= decoupled from computer science (ask a CS student about FORTRAN)

® highly conservative code owners
= modern software engineering advances are picked up very slowly

® intra-node parallelism dominated by OpenMP (e.g. Intel) and CUDA (Nvidia)
= vendor and tool dependencies = limited portability
= multiple diverging code branches = hard to maintain

® inter-node communication = MPI

® hardware life time: 5 years

® software life time: multiple tens of years

= outlives systems by far = aim for portability
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Do not contribute to that situation!

What can we do better?

® put portability first (# performance portability)
= OpenCL has the largest hardware coverage for intra-node programming
® CPUs, GPUs, Al accelerators, FPGAs, . ..
= library only = no tool dependencies
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Do not contribute to that situation!

What can we do better?

® put portability first (# performance portability)
= OpenCL has the largest hardware coverage for intra-node programming
® CPUs, GPUs, Al accelerators, FPGAs, . ..
= library only = no tool dependencies

® use modern techniques with a broad community (beyond HPC)

= e.g. modern C++ for host code
= e.g. CMake for building

® develop code interdisciplinary

= domain experts design the model ...
= ...computer scientists the software
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Big Picture: OpenCL, SYCL, SPIR-V and Intel One API
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Big Picture: OpenCL, SYCL, SPIR-V and Intel One API

[ Application ] (SYCLW

® higher-level programming model for

Intel One API ! OpenCL
Data Parallel C++ ® single source, standard C++,
(DPC++) = SYCL compiler needed

sYcL ] (SERW

e Standard Portable Intermediate

Representation

—

v v ® standardised intermediate language
OpenCL = based on LLVM-IR
¢ ¢ ¢ ¢ ¢ ® device-independent binaries for
CPU GPU FPGA | Al OpenCL
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OpenCL (Open Computing Language) in a Nutshell

® open, royalty-free standard for ® personal computers, servers, mobile
cross-platform, parallel programming devices and embedded platforms
® maintained by Khronos Group e first released: 2009-08-28

https://www.khronos.org/opencl/ 6/32
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OpenCL Platform and Memory Model
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OpenCL Platform and Memory Model
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OpenCL Machine Model Mapping

OpenCL Platform

CPU Hardware

GPU Hardware

Compute Device Processor/Board | GPU device
Compute Unit Core (thread) Streaming MP
Processing Element SIMD Lane CUDA Core

global /const. memory | DRAM DRAM

local memory DRAM Shared Memory
private memory Register/DRAM | Priv. Mem./Register
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OpenCL Machine Model Mapping

OpenCL Platform

CPU Hardware

GPU Hardware

Compute Device Processor/Board | GPU device
Compute Unit Core (thread) Streaming MP
Processing Element SIMD Lane CUDA Core

global /const. memory | DRAM DRAM

local memory DRAM Shared Memory
private memory Register/DRAM | Priv. Mem./Register

= write code for this abstract machine model

= device-specific OpenCL compiler and runtime maps it to actual hardware

= library-only implementation: no toolchain, many language bindings
= currently: widest practical portability of parallel programming models
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OpenCL Host Program and Kernel Execution

= a host program uses OpenCL APl-calls
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OpenCL Host Program and Kernel Execution

= a host program uses OpenCL APl-calls
= kernels are written in OpenCL C/C+ kernel language

= kernels are compiled at runtime for a specific device
= kernels are executed on a range of work-items as work-groups of cooperating

threads
work-item work-group sizey
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Selected Target Hardware:

Device Name (architecture) [TFLOPS] | [GiB/s] | [FLOP/Byte]

2x Intel Xeon Gold 6138 (SKL) | 2.56 238 10.8

2x Intel Xeon E5-2680v3 (HSW) | 0.96 136 7.1

Intel Xeon Phi 7250 (KNL) 2.612 490/115° 5.3/22.7°

Nvidia Tesla K40 (Kepler) 1.31 480 2.7

AMD Firepro W8100 (Hawaii) 2.1 320 6.6
(inteD [{ AMDZ1
XEON PHI ] nVIDlem FIREFRD

- TESLA

* calculated with max. AVX frequency of 1.2 GHz: 2611.2 GFLOPS = 1.2 GHz X 68 cores X 8 SIMD x 2 VPUs x 2 FMA
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COSIM - A Predictive Cometary Coma Simulation
Solve dust dynamics:
ddust(F) = dgas-drag + grav + 3Coriolis + dcentrifugal
= %CdaNgaS(F)mgaS(Vdust — Vgas) | Vdust — Vgas| — V&(F)

—20 X Vgust — & X (@ X T)

Compare with data of 67P/Churyumov—Gerasimenko
from Rosetta spacecraft:

corr 0.90 time 12:12

o 2 4 6 8 10 12

Panels 1-2: OSIRIS NAC Image, Panels 3-4: Simulation Results, Right Image: ESA — C. Carreau/ATG medialab, CC BY-SA 3.0-igo 11/32



DM-HEOM: Computing the Hierarchical Equations Of Motion

Model for Open Quantum Systems
e understand the energy transfer in
photo-active molecular complexes

= e.g. photosynthesis
... but also quantum computing

OZ
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core complex
complex

Gytochrome ¢
[Image by University of Copenhagen Biology Department]

M. Noack, A. Reinefeld, T. Kramer, Th. Steinke, DM-HEOM: A Portable and Scalable Solver-Framework
for the Hierarchical Equations of Motion, IPDPS/PDSEC'18, 10.1109/IPDPSW.2018.00149
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DM-HEOM: Computing the Hierarchical Equations Of Motion

Model for Open Quantum Systems

e understand the energy transfer in layer 0
photo-active molecular complexes
= e.g. photosynthesis
; layer 1
... but also quantum computing
e millions of coupled ODEs
layer 2

® hierarchical graph of complex matrices
(auxiliary density operators, ADOs)
= dim: Nsites X Nsites
= count: exp. in hierarchy depth d
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Interdisciplinary Workflow D domain experts D computer scientists

Mathematical
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Interdisciplinary Workflow O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel
Model (Mathematica) within Mathematica

- ODEs - domain scientist’s tool - replace some code
- PDEs - high level with OpenCL
- Graphs - symbolic solvers

- - arbitrary precision
- very limited performance
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Mathematica and OpenCL

(* Load OpenCL support *)
Needs ["OpenCLLink"]

(¥ Create OpenCLFunction from source , kernel mname , signature x*)
doubleFun = OpenCLFunctionLoad["

__kernel void doubleVec(__global mint * in, mint length) {

int index = get_global_id (0);

if (index < length)
in[index] = 2*in[index];
}", "doubleVec", {{_Integer}, _Integer}, 256]

(* Create some input *)

vec = Range [20];
(x Call the function *)
doubleFun[vec, 20] (% NDRange deduced from args and wg-size *)

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html 14 /32
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Mathematica and OpenCL

(* Load OpenCL support *)
Needs ["OpenCLLink"]

(¥ Create OpenCLFunction from source , kernel mname, signature
doubleFun = OpenCLFunctionLoad["
__kernel void doubleVec(__global mint * in, mint length) {

int index = get_global_id (0);

special OpenCL typedefs
if (index < length) matching Mathematica types
in[index] = 2*in[index];
}", "doubleVec", {{_Integer}, _Integer}, 256]

(¥ Create some dinput *)

vec = Range [20];

(x Call the function *)
doubleFun [vec, 20] (=* NDRange deduced from args and wg-size

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html

*)

*)
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Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- OpenCL 1.2 for hotspots
- modern C+ 11/14/17

- CMake for building

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica
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OpenCL SDKs and Versions

name version OpenCL version supported devices
Intel OpenCL 18.1 CPU: 2.1, CPUs (AVX-512),
GPU: 2.1 Intel GPUs, no KNL
Intel OpenCL | ... CPU: 1.2 (exp. 2.1), | CPUs (up to AVX2),
GPU: 2.1 Intel GPUs
Intel OpenCL 14.2 1.2 Xeon Phi (KNC, IMCI SIMD)
Nvidia OpenCL | CUDA 10.1 | 1.2 (exp. 2.0) Nvidia GPU
AMD-APP SDK | > 18.8.1 2.0 (GPU), 12H€PY) | GPU, €PUs{AVFMA4XOP)
PoCL 1.3 2.0 CPUs (AVX-512), GPUs, ARM
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OpenCL SDKs and Versions

name version OpenCL version supported devices
Intel OpenCL 18.1 CPU: 2.1, CPUs (AVX-512),
GPU: 2.1 Intel GPUs, no KNL
Intel OpenCL | ... CPU: 1.2 (exp. 2.1), | CPUs (up to AVX2),
GPU: 2.1 Intel GPUs
Intel OpenCL 14.2 1.2 Xeon Phi (KNC, IMCI SIMD)
Nvidia OpenCL | CUDA 10.1 | 1.2 (exp. 2.0) Nvidia GPU
AMD-APP SDK | > 18.8.1 2.0 (GPU), 12H€PY) | GPU, €PUs{AVFMA4XOP)
PoCL 1.3 2.0 CPUs (AVX-512), GPUs, ARM

= Intel rediscovered OpenCL for HPC (One API)
= OpenCL 2.x mostly supported now, but 1.2 is still lowest common denominator
= many more, e.g. FPGA SDKs by Intel (Altera), and Xylinx
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The OpenCL Installable Client Driver (ICD) Loader

® allows multiple OpenCL installations to be installed and used next to each other
® applications link with a generic 1ibOpenCL.so
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® applications link with a generic 1ibOpenCL.so

/
| _usr/lib/
LlibOpenCL.so ...... runtime loader looking into /etc/OpenCL/vendors
| _etc/0OpenCL/vendors/
intel64.icd.......... textfile with actual library name/path
amdocl64.icd ........ textfile with actual library name/path
| opt/intel_ocl/lib/
Llibintelocl.so ............... actual Intel implementation
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Llibamdochél.so .............. actual AMD implementation
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The OpenCL Installable Client Driver (ICD) Loader

® allows multiple OpenCL installations to be installed and used next to each other
® applications link with a generic 1ibOpenCL.so

/
| _usr/lib/
LlibOpenCL.so ...... runtime loader looking into /etc/OpenCL/vendors
| _etc/0OpenCL/vendors/
intel64.icd.......... textfile with actual library name/path
amdocl64.icd ........ textfile with actual library name/path
| opt/intel_ocl/lib/
Llibintelocl.so ............... actual Intel implementation
| opt/AMDAPPSDK/1ib/
Llibamdoc164.so .............. actual AMD implementation

® applications typically link to the loader, direct link is also possible
® only some loaders support OPENCL_VENDOR_PATH env. variable
= problematic for user-installation (modifying /etc/ requires root)
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Compilation

OpenCL Header Files:
= avoid trouble: use reference headers, ship with project

= https://github.com/KhronosGroup/OpenCL-Headers
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Compilation

OpenCL Header Files:
= avoid trouble: use reference headers, ship with project

= https://github.com/KhronosGroup/OpenCL-Headers

CMake: "find_package (OpenCL REQUIRED)"
® OpenCL CMake module only works in some scenarios
= the magic line (optional, shown here: bypass 1ibOpenCL. s0):

mkdir build.intel_16.1.1
cd build.intel_16.1.1

cmake -DCMAKE_BUILD_TYPE=Release -DOpenCL_FOUND=True -DOpenCL_INCLUDE DIR=../../
thirdparty/include/ -DOpenCL_LIBRARY=/opt/intel/opencl_runtime_16.1.1/0pt/
intel/opencl-1.2-6.4.0.25/1ib64/1libintelocl.so

make -j
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Platform and Device Selection

® OpenCL API: lots of device properties can be queried
® simple and pragmatic: oclinfo tool = platform/device index
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Platform and Device Selection

® OpenCL API: lots of device properties can be queried
® simple and pragmatic: oclinfo tool = platform/device index

Platform O:
NAME : AMD Accelerated Parallel Processing
VERSION: OpenCL 2.0 AMD-APP (1912.5)
Device 0:
NAME : Hawaii

VENDOR : Advanced Micro Devices, Inc.
VERSION: OpenCL 2.0 AMD-APP (1912.5)
Device 1:
NAME : Intel (R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
VENDOR : GenuineIntel
VERSION: OpenCL 1.2 AMD-APP (1912.5)

Platform 1:
NAME : Intel (R) OpenCL
VERSION: OpenCL 1.2 LINUX
Device 0:
NAME : Intel (R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

VENDOR: Intel(R) Corporation
VERSION: OpenCL 1.2 (Build 57)

https://github.com/noma/ocl 19/32


https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v self-contained executable for
V' #include directives production use
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Handling Kernel Source Code

a) loading source files at runtime:

v" no host-code recompilation
V' #include directives

header
.cl

#include

kernel_
source
.l

https://github.com/noma/ocl

b) embedded source as string constant:

V' self-contained executable for
production use
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Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v self-contained executable for
V' #include directives production use
header | _ _ _ __________.
.cl 1
1
. \
#include :
I
1
kernel_
source —— resolve__includes.sh
.cl

https://github.com/noma/ocl 20/32


https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v self-contained executable for
V' #include directives production use
header

.« - create raw string literal
R"str_not_in src(

#in(::lude : // input

)str_not_in_src"

kernel_
source —— resolve__includes.sh cl_to_hpp.sh
.cl
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a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header

.l - create raw string literal
R"str_not_in src(

#in(::lude : // input

)str_not_in_src"

kernel_
source —— resolve__includes.sh cl_to_hpp.sh
.cl

https://github.com/noma/ocl

kernel_
source
-hpp

20/32


https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
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.cl .hpp

#include

kernel L
wrapper_|
class
-hpp/.cpp

https://github.com/noma/ocl 20/32


https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header | _ _ _ __________.
<l ! - create raw string literal
! R"str_not_in src(
#include : // input
! 1
1
1

)str_not_in_src"

kernel_ kernel_
source ——| resolve_includes.sh cl_to_hpp.sh source
.cl .hpp

#include

https://github.com/noma/ocl

kernel L
wrapper_|
class
-hpp/.cpp

20/32


https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header

.l - create raw string literal
R"str_not_in src(
// input
)str_not_in_src"

#include

https://github.com/noma/ocl

kernel_ kernel_
source — | resolve__includes.sh cl_to_hpp.sh source
.cl .hpp

#inc:lude

kernel L
wrapper_|
class
-hpp/.cpp

20/32


https://github.com/noma/ocl

Handling Kernel Source Code
a) loading source files at runtime:

v" no host-code recompilation
V' #include directives

header
.cl

#include

https://github.com/noma/ocl
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v self-contained executable for
production use
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R"str_not_in src(
// input
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Example OpenCL Runtime Configuration File

[opencl]

# use first device of second platform
platform_index=1

device_index=0

# enable zero copy buffers for CPU devices
zero_copy_device_types={cpu}

# pass a custom include path to the OpenCL compiler
compile_options=-I../cl

# load kernel source from file at runtime
kernel_file_heom_ode=../cl/heom_ode.cl
kernel_name_heom_ode=heom_ode

# unset option, load embedded source
#kernel_file_rk_weighted_add=
#kernel_name_rk_weighted_add=
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Interdisciplinary Workflow
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replace some code
with OpenCL

compare results

figure out numerics
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OpenCL and Communication/MPI

Design Recommendation:

keep both aspects as independent as possible
® design code to be agnostic to whether it works on a complete problem instance or
on a partition

provide hooks to trigger communication in-between kernel calls

wrap needed parts of MPI in a thin, exchangeable abstraction layer
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Design Recommendation:

keep both aspects as independent as possible
® design code to be agnostic to whether it works on a complete problem instance or
on a partition

provide hooks to trigger communication in-between kernel calls

wrap needed parts of MPI in a thin, exchangeable abstraction layer

Current trade-offs:
® communication introduces additional logical host-device transfers
= scaling starts slowly, e.g. two nodes might be slower than one
® a single process might not be able to saturate the network
= multiple processes per node sharing a device (CPU device: set CPU mask)
® pick one: zero-copy buffers or overlapping compute and communication
= either host (comm.) or device (comp.) own the memory at any point in time

= overlapping requires copies again 25



Data Transfer Paths

. . : . .
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Data Transfer Paths

. . : . .
: : ! : :
OpenCL : application : fabric X fabric : application : OpenCL
driver code driver ! driver code driver
: : ! : :
0 ( Y 3!
% device { CUDA GPU-Direct RDMA } device
: : ! : :
© memory : can be avoided : : memory
: in some cases : :
I - : with OpenCL : : A
......... DMA‘ DMA
: : ! : :
4 : | : |
1
pinned mem Fost mem pinned | pinned mem host mem pinned
% device [ .., ™ -~ s, ® fabric |— RDMA > fabric [ _., 6 > 4, ® device
c C C C
2 butfer | o | ™Y | P buffer butfer | o | ™Y | P | buffer

24 /32



Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)
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® highest per-node-efficiency with 384 — PoCL
work-items per node with Intel SDK
= 16 = logical SIMD-width required

by Intel OpenCL vectoriser

IS

® work-items per node can
dramatically affect job runtime
= +1 work-item on a single node can
more than double job runtime

runtime per iteration [s]
N
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- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

26 /32



Interdisciplinary Workflow

Mathematlcal High-Level Prototype OpenCL kernel
Model (Mathematica) ithi

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL
compare results
figure out numerics

use accelerators in MM

Distributed Optimisation /
Host Application Production Runs

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14/17
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

J

O domain experts O computer scientists

within Mathematica]_ o

26 /32



Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

Distributed Optimisation /
Host Application Production Runs

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14/17
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

- always collect perf. data

- profile/tune code

- add performance tweaks

- use device-specific
kernel variants if needed

O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

26 /32



DM-HEOM Benchmarks: Work-item Granularity

Impact of Work-item Granularity
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[:> CPUs: 1.2x to 1.35x speedup for Matrix granularity]
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Impact of Work-item Granularity
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

6000 -
Granularity

Matrix
. Element

4000 -

oo 1 |

2 SKL 2 HSW KNL

2 SKL 2 HSW KNL

average solver step runtime [ms]
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[=> GPUs: up to 6.7x (K40) and 7.2x (W8100) speedup for Element granularityJ
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DM-HEOM Benchmarks: Memory Layout

Impact of Configurable Memory Layout
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

1500 -
1000 -

500 -

0-

average solver step runtime [ms]

2SKL 2 HSW KNL 2SKL 2 HSW KNL

28/32



DM-HEOM Benchmarks: Memory Layout

Impact of Configurable Memory Layout
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

1500 -

1000 -

500 -

average solver step runtime [ms]

2SKL 2 HSW KNL 2SKL 2 HSW KNL

(= SKL and HSW: 1.3x to 2.4x speedup with AoSoA |

28/32



DM-HEOM Benchmarks: Memory Layout

Impact of Configurable Memory Layout
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

1500 -

1000 -
- L

2 SKL 2 HSW

average solver step runtime [ms]

KNL 2SKL 2 HSW KNL

(= KNL: 1.6x to 2.8 speedup with AoSoA |

28/32



DM-HEOM Benchmarks: Performance Portability
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[=> Older Haswell Xeon exceeds expectations, due to better OpenCL support}
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[=> KNL and K40 sensitive to irregular accesses from extreme coupling in this scenario.}
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Conclusion

General
® work interdisciplinary

® put portability first
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General
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® put portability first

OpenCL

® highest portability of available parallel programming models
® integrates well into interdisciplinary workflow

® runtime compilation allows compiler-optimisation with runtime-constants
® performance portability is not for free:

= e.g. via configurability of work-item granularity and memory layout
= worst case: multiple kernels, still better than multiple programming models
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Conclusion
General
® work interdisciplinary
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OpenCL

® highest portability of available parallel programming models
® integrates well into interdisciplinary workflow
® runtime compilation allows compiler-optimisation with runtime-constants

® performance portability is not for free:

= e.g. via configurability of work-item granularity and memory layout
= worst case: multiple kernels, still better than multiple programming models

Caveats

e vendors are slow in implementing new standards = use OpenCL 1.2 + complain
® interoperability with communication APIs not addressed by current standard
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EoP

Thank you.

Feedback? Questions? Ideas?
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