OpenCL in Scientific High Performance Computing

2019-09-24, IXPUG Annual Conference 2019

Matthias Noack
noack@zib.de

B

Zuse Institute Berlin

Distributed Algorithms and Supercomputing

1/32

Audience Survey

2/32

Audience Survey

® Who has a rough idea what OpenCL is?

2/32

Audience Survey

® Who has hands-on experience with OpenCL?

2/32

Audience Survey

® Who is using OpenCL in a real-world code?

2/32

Audience Survey

® Who is using OpenCL in a real-world code?
o . Why?

2/32

Audience Survey

® Who is using OpenCL in a real-world code?

® _..Why not?

2/32

Audience Survey

® Who is using OpenCL in a real-world code?

® . ..What are you using instead?

2/32

The Situation with Scientific HPC

e tons of legacy code (FORTRAN) authored by domain experts

= rather closed community
= decoupled from computer science (ask a CS student about FORTRAN)

® highly conservative code owners
= modern software engineering advances are picked up very slowly

3/32

The Situation with Scientific HPC

tons of legacy code (FORTRAN) authored by domain experts

= rather closed community
= decoupled from computer science (ask a CS student about FORTRAN)

highly conservative code owners
= modern software engineering advances are picked up very slowly

intra-node parallelism dominated by OpenMP (e.g. Intel) and CUDA (Nvidia)

= vendor and tool dependencies = limited portability
= multiple diverging code branches = hard to maintain

inter-node communication = MPI

3/32

The Situation with Scientific HPC

e tons of legacy code (FORTRAN) authored by domain experts

= rather closed community
= decoupled from computer science (ask a CS student about FORTRAN)

® highly conservative code owners
= modern software engineering advances are picked up very slowly

® intra-node parallelism dominated by OpenMP (e.g. Intel) and CUDA (Nvidia)
= vendor and tool dependencies = limited portability
= multiple diverging code branches = hard to maintain

® inter-node communication = MPI

® hardware life time: 5 years

® software life time: multiple tens of years

= outlives systems by far = aim for portability

3/32

Do not contribute to that situation!

What can we do better?

® put portability first (# performance portability)
= OpenCL has the largest hardware coverage for intra-node programming
® CPUs, GPUs, Al accelerators, FPGAs, . ..
= library only = no tool dependencies

4/32

Do not contribute to that situation!

What can we do better?

® put portability first (# performance portability)
= OpenCL has the largest hardware coverage for intra-node programming
® CPUs, GPUs, Al accelerators, FPGAs, . ..
= library only = no tool dependencies

® use modern techniques with a broad community (beyond HPC)

= e.g. modern C++ for host code
= e.g. CMake for building

4/32

Do not contribute to that situation!

What can we do better?

® put portability first (# performance portability)
= OpenCL has the largest hardware coverage for intra-node programming
® CPUs, GPUs, Al accelerators, FPGAs, . ..
= library only = no tool dependencies

® use modern techniques with a broad community (beyond HPC)

= e.g. modern C++ for host code
= e.g. CMake for building

® develop code interdisciplinary

= domain experts design the model ...
= ...computer scientists the software

4/32

Big Picture: OpenCL, SYCL, SPIR-V and Intel One API

[Application]

Gﬂel One API
\ 4

Data Parallel C++
(DPC++)

[SYCL

\ 4 \4
OpenCL

LA 2T 2NN 2

[CPU] [GPU} [FPGA} [Al }

\L//

-
)

5/32

Big Picture: OpenCL, SYCL, SPIR-V and Intel One API

{ Application } @CLW

® higher-level programming model for
Intel One API
v OpenCL
Data Parallel C++ ® single source, standard C++,
(DPC++) = SYCL compiler needed

[SYCL]

\ 4 v

OpenCL

L2 N 2N 2

CPU | |GPU | FPGA Al

5/32

Big Picture: OpenCL, SYCL, SPIR-V and Intel One API

[Application] (SYCLW

® higher-level programming model for

Intel One API ! OpenCL
Data Parallel C++ ® single source, standard C++,
(DPC++) = SYCL compiler needed

sYcL] (SERW

e Standard Portable Intermediate

Representation

—

v v ® standardised intermediate language
OpenCL = based on LLVM-IR
¢ ¢ ¢ ¢ ¢ ® device-independent binaries for
CPU GPU FPGA | Al OpenCL

5/32

OpenCL (Open Computing Language) in a Nutshell

® open, royalty-free standard for ® personal computers, servers, mobile
cross-platform, parallel programming devices and embedded platforms
® maintained by Khronos Group e first released: 2009-08-28

https://www.khronos.org/opencl/ 6/32

https://www.khronos.org/opencl/

OpenCL (Open Computing Language) in a Nutshell

® open, royalty-free standard for
cross-platform, parallel programming

® maintained by Khronos Group

Implementers

Desktop/Mobile/Embedded/FPGA

£

S

NVIDIA.

Imagination

¢

M

https://www.khronos.org/opencl/

i B

AMD 1
(inteD)

ARM

QuaLcomww

Peiiiong
£ XILINX.
s

GyeL

Single Source C++ Programming

$ES
& a

OpenCL

Core API and Language Specs

Portable Kernel Intermediate Language

© codeplay *

® personal computers, servers, mobile
devices and embedded platforms

e first released: 2009-08-28

Working Group Members

Apps/Tools/Tests/Courseware
Al
Adobe
W

@ HUAWE!

= freescale-

SONY

vy University
47 «Windsor

Eﬁ University of
BRISTOL

MULTICORE
AW WARE

6/32

https://www.khronos.org/opencl/

OpenCL Platform and Memory Model

Compute Device (CD)
\\

Compute Unit (CU)

Processing
Element
(PE)

-]

-1

11

Host

7/32

OpenCL Platform and Memory Model

Compute Device (CD)

\

Compute Unit (CU)

Processing
Element
(PE)

Memory Model:

-]

CD has devi
0| memery with

-1

lottal /constant
00 -

addr. space

11

® CU has local

memory addr. space

DD ' D ® PE has private

memory addr. space

Host

= relaxed consistency

7/32

OpenCL Machine Model Mapping

OpenCL Platform

CPU Hardware

GPU Hardware

Compute Device Processor/Board | GPU device
Compute Unit Core (thread) Streaming MP
Processing Element SIMD Lane CUDA Core

global /const. memory | DRAM DRAM

local memory DRAM Shared Memory
private memory Register/DRAM | Priv. Mem./Register

8/32

OpenCL Machine Model Mapping

OpenCL Platform

CPU Hardware

GPU Hardware

Compute Device Processor/Board | GPU device
Compute Unit Core (thread) Streaming MP
Processing Element SIMD Lane CUDA Core

global /const. memory | DRAM DRAM

local memory DRAM Shared Memory
private memory Register/DRAM | Priv. Mem./Register

= write code for this abstract machine model

8/32

OpenCL Machine Model Mapping

OpenCL Platform

CPU Hardware

GPU Hardware

Compute Device Processor/Board | GPU device
Compute Unit Core (thread) Streaming MP
Processing Element SIMD Lane CUDA Core

global /const. memory | DRAM DRAM

local memory DRAM Shared Memory
private memory Register/DRAM | Priv. Mem./Register

= write code for this abstract machine model

= device-specific OpenCL compiler and runtime maps it to actual hardware

8/32

OpenCL Machine Model Mapping

OpenCL Platform

CPU Hardware

GPU Hardware

Compute Device Processor/Board | GPU device
Compute Unit Core (thread) Streaming MP
Processing Element SIMD Lane CUDA Core

global /const. memory | DRAM DRAM

local memory DRAM Shared Memory
private memory Register/DRAM | Priv. Mem./Register

= write code for this abstract machine model

= device-specific OpenCL compiler and runtime maps it to actual hardware

= library-only implementation: no toolchain, many language bindings

8/32

OpenCL Machine Model Mapping

OpenCL Platform

CPU Hardware

GPU Hardware

Compute Device Processor/Board | GPU device
Compute Unit Core (thread) Streaming MP
Processing Element SIMD Lane CUDA Core

global /const. memory | DRAM DRAM

local memory DRAM Shared Memory
private memory Register/DRAM | Priv. Mem./Register

= write code for this abstract machine model

= device-specific OpenCL compiler and runtime maps it to actual hardware

= library-only implementation: no toolchain, many language bindings
= currently: widest practical portability of parallel programming models

8/32

OpenCL Host Program and Kernel Execution

= a host program uses OpenCL APl-calls

9/32

OpenCL Host Program and Kernel Execution

= a host program uses OpenCL APl-calls
= kernels are written in OpenCL C/C+ kernel language

9/32

OpenCL Host Program and Kernel Execution

= a host program uses OpenCL APl-calls
= kernels are written in OpenCL C/C+ kernel language

= kernels are compiled at runtime for a specific device

9/32

OpenCL Host Program and Kernel Execution

= a host program uses OpenCL APl-calls
= kernels are written in OpenCL C/C+ kernel language
= kernels are compiled at runtime for a specific device

= kernels are executed on a range of work-items as work-groups of cooperating
threads

9/32

OpenCL Host Program and Kernel Execution

= a host program uses OpenCL APl-calls
= kernels are written in OpenCL C/C+ kernel language

= kernels are compiled at runtime for a specific device
= kernels are executed on a range of work-items as work-groups of cooperating

threads
work-item work-group sizey
i

13
o
X

s Ei
o

g

.

o <

o

b=

NDRange size,

Compute Device Compute Unit Processing Element
9/32

Selected Target Hardware:

Device Name (architecture) [TFLOPS] | [GiB/s] | [FLOP/Byte]

2x Intel Xeon Gold 6138 (SKL) | 2.56 238 10.8

2x Intel Xeon E5-2680v3 (HSW) | 0.96 136 7.1

Intel Xeon Phi 7250 (KNL) 2.612 490/115° 5.3/22.7°

Nvidia Tesla K40 (Kepler) 1.31 480 2.7

AMD Firepro W8100 (Hawaii) 2.1 320 6.6
(inteD [{ AMDZ1
XEON PHI] nVIDlem FIREFRD

- TESLA

* calculated with max. AVX frequency of 1.2 GHz: 2611.2 GFLOPS = 1.2 GHz X 68 cores X 8 SIMD x 2 VPUs x 2 FMA

10/32

COSIM - A Predictive Cometary Coma Simulation
Solve dust dynamics:
ddust(F) = dgas-drag + grav + 3Coriolis + dcentrifugal
= %CdaNgaS(F)mgaS(Vdust — Vgas) | Vdust — Vgas| — V&(F)

—20 X Vgust — & X (@ X T)

Compare with data of 67P/Churyumov—Gerasimenko
from Rosetta spacecraft:

corr 0.90 time 12:12

o 2 4 6 8 10 12

Panels 1-2: OSIRIS NAC Image, Panels 3-4: Simulation Results, Right Image: ESA — C. Carreau/ATG medialab, CC BY-SA 3.0-igo 11/32

DM-HEOM: Computing the Hierarchical Equations Of Motion

Model for Open Quantum Systems
e understand the energy transfer in
photo-active molecular complexes

= e.g. photosynthesis
... but also quantum computing

OZ

Soluble
electron

BChlcrod
element

Reaction centar Rieske ISP
eytochrome b

Periplasm
core complex
complex

Gytochrome ¢
[Image by University of Copenhagen Biology Department]

M. Noack, A. Reinefeld, T. Kramer, Th. Steinke, DM-HEOM: A Portable and Scalable Solver-Framework
for the Hierarchical Equations of Motion, IPDPS/PDSEC'18, 10.1109/IPDPSW.2018.00149

12/32

DM-HEOM: Computing the Hierarchical Equations Of Motion

Model for Open Quantum Systems

doy, 7
. — = [H 0]
e understand the energy transfer in e h
photo-active molecular complexes B K-l
= e.g. photosynthesis ~u ; zk: M, (0,)Y (b, k)
... but also quantum computin -
q P g i[ﬂ\b 7K ! c(b,k)}v>< .
® millions of coupled ODEs S Lghty, A Try(b k)] T
B K-1
222 Vi
b=1 &
B K-1
+ Z Z T, (b,1) D0 A6, 1) T (1 1)
b=1 &

M. Noack, A. Reinefeld, T. Kramer, Th. Steinke, DM-HEOM: A Portable and Scalable Solver-Framework
for the Hierarchical Equations of Motion, IPDPS/PDSEC'18, 10.1109/IPDPSW.2018.00149 12/32

DM-HEOM: Computing the Hierarchical Equations Of Motion

Model for Open Quantum Systems

e understand the energy transfer in layer 0
photo-active molecular complexes
= e.g. photosynthesis
; layer 1
... but also quantum computing
e millions of coupled ODEs
layer 2

® hierarchical graph of complex matrices
(auxiliary density operators, ADOs)
= dim: Nsites X Nsites
= count: exp. in hierarchy depth d

M. Noack, A. Reinefeld, T. Kramer, Th. Steinke, DM-HEOM: A Portable and Scalable Solver-Framework
for the Hierarchical Equations of Motion, IPDPS/PDSEC'18, 10.1109/IPDPSW.2018.00149 12/32

DM-HEOM: Computing the Hierarchical Equations Of Motion

Model for Open Quantum Systems

e understand the energy transfer in
photo-active molecular complexes

= e.g. photosynthesis

... but also quantum computing

e millions of coupled ODEs

® hierarchical graph of complex matrices
(auxiliary density operators, ADOs)
= dim: Nsites X Nsites
= count: exp. in hierarchy depth d

M. Noack, A. Reinefeld, T. Kramer, Th. Steinke, DM-HEOM: A Portable and Scalable Solver-Framework
for the Hierarchical Equations of Motion, IPDPS/PDSEC'18, 10.1109/IPDPSW.2018.00149 12/32

DM-HEOM: Computing the Hierarchical Equations Of Motion

Model for Open Quantum Systems

e understand the energy transfer in
photo-active molecular complexes

= e.g. photosynthesis

... but also quantum computing

e millions of coupled ODEs

® hierarchical graph of complex matrices
(auxiliary density operators, ADOs)
= dim: Nsites X Nsites
= count: exp. in hierarchy depth d

M. Noack, A. Reinefeld, T. Kramer, Th. Steinke, DM-HEOM: A Portable and Scalable Solver-Framework
for the Hierarchical Equations of Motion, IPDPS/PDSEC'18, 10.1109/IPDPSW.2018.00149 12/32

Interdisciplinary Workflow D domain experts D computer scientists

Mathematical
.

13/32

Interdisciplinary Workflow O domain experts O computer scientists

Mathematical
.

- ODEs
- PDEs
- Graphs

13/32

|nterdiscip|inary Workflow O domain experts O computer scientists

Mathematical High-Level Prototype
o :
Model (Mathematica)

- ODEs
- PDEs
- Graphs

13/32

Interdisciplinary Workflow

Mathemat|cal High-Level Prototype
I\/Iodel (Mathematica)

- ODEs
- PDEs
- Graphs

domain scientist’s tool
high level

symbolic solvers
arbitrary precision

very limited performance

O domain experts O computer scientists

13/32

Interdisciplinary Workflow O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel
Model (Mathematica) within Mathematica

- ODEs - domain scientist’s tool
- PDEs - high level
- Graphs - symbolic solvers

- - arbitrary precision
- very limited performance

13/32

Interdisciplinary Workflow O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel
Model (Mathematica) within Mathematica

- ODEs - domain scientist’s tool - replace some code
- PDEs - high level with OpenCL
- Graphs - symbolic solvers

- - arbitrary precision
- very limited performance

13/32

Mathematica and OpenCL

(* Load OpenCL support *)
Needs ["OpenCLLink"]

(¥ Create OpenCLFunction from source , kernel mname , signature x*)
doubleFun = OpenCLFunctionLoad["

__kernel void doubleVec(__global mint * in, mint length) {

int index = get_global_id (0);

if (index < length)
in[index] = 2*in[index];
}", "doubleVec", {{_Integer}, _Integer}, 256]

(* Create some input *)

vec = Range [20];
(x Call the function *)
doubleFun[vec, 20] (% NDRange deduced from args and wg-size *)

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html 14 /32

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html

Mathematica and OpenCL

(* Load OpenCL support *)
Needs ["OpenCLLink"]

(¥ Create OpenCLFunction from source , kernel mname, signature
doubleFun = OpenCLFunctionLoad["
__kernel void doubleVec(__global mint * in, mint length) {

int index = get_global_id (0);

special OpenCL typedefs
if (index < length) matching Mathematica types
in[index] = 2*in[index];
}", "doubleVec", {{_Integer}, _Integer}, 256]

(¥ Create some dinput *)

vec = Range [20];

(x Call the function *)
doubleFun [vec, 20] (=* NDRange deduced from args and wg-size

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html

*)

*)

14/32

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html

Mathematica and OpenCL

(* Load OpenCL support *)
Needs ["OpenCLLink"]

(¥ Create OpenCLFunction from source , kernel mname , signature x*)
doubleFun = OpenCLFunctionLoad["
__kernel void doubleVec(__global mint * in, mint length) {

int index = get_global_id (0);

{N[)Range can be larger than length]

if (index < length)<—
in[index] = 2*in[index];
}", "doubleVec", {{_Integer}, _Integer}, 256]

(¥ Create some dinput *)

vec = Range [20];
(x Call the function *)
doubleFun[vec, 20] (% NDRange deduced from args and wg-size *)

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html 14 /32

https://reference.wolfram.com/language/OpenCLLink/guide/OpenCLLink.html

Interdisciplinary Workflow O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel
Model (Mathematica) within Mathematica

- ODEs - domain scientist’s tool - replace some code
- PDEs - high level with OpenCL
- Graphs - symbolic solvers

- - arbitrary precision
- very limited performance

15/32

Interdisciplinary Workflow

O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel
I\/Iodel (Mathematica) within Mathematica

- ODEs
- PDEs
- Graphs

domain scientist’s tool
high level

symbolic solvers
arbitrary precision

very limited performance

- replace some code
with OpenCL

compare results

figure out numerics

- use accelerators in MM

15/32

Interdisciplinary Workflow

O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel
I\/Iodel (Mathematica) within Mathematica

- ODEs
- PDEs
- Graphs

C+ Host
Application

domain scientist’s tool
high level

symbolic solvers
arbitrary precision

very limited performance

- replace some code
with OpenCL

compare results

figure out numerics

- use accelerators in MM

15/32

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- OpenCL 1.2 for hotspots
- modern C+ 11/14/17

- CMake for building

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

15/32

OpenCL SDKs and Versions

name version OpenCL version supported devices
Intel OpenCL 18.1 CPU: 2.1, CPUs (AVX-512),
GPU: 2.1 Intel GPUs, no KNL
Intel OpenCL | ... CPU: 1.2 (exp. 2.1), | CPUs (up to AVX2),
GPU: 2.1 Intel GPUs
Intel OpenCL 14.2 1.2 Xeon Phi (KNC, IMCI SIMD)
Nvidia OpenCL | CUDA 10.1 | 1.2 (exp. 2.0) Nvidia GPU
AMD-APP SDK | > 18.8.1 2.0 (GPU), 12H€PY) | GPU, €PUs{AVFMA4XOP)
PoCL 1.3 2.0 CPUs (AVX-512), GPUs, ARM

16/32

OpenCL SDKs and Versions

name version OpenCL version supported devices
Intel OpenCL 18.1 CPU: 2.1, CPUs (AVX-512),
GPU: 2.1 Intel GPUs, no KNL
Intel OpenCL | ... CPU: 1.2 (exp. 2.1), | CPUs (up to AVX2),
GPU: 2.1 Intel GPUs
Intel OpenCL 14.2 1.2 Xeon Phi (KNC, IMCI SIMD)
Nvidia OpenCL | CUDA 10.1 | 1.2 (exp. 2.0) Nvidia GPU
AMD-APP SDK | > 18.8.1 2.0 (GPU), 12H€PY) | GPU, €PUs{AVFMA4XOP)
PoCL 1.3 2.0 CPUs (AVX-512), GPUs, ARM

= Intel rediscovered OpenCL for HPC (One API)
= OpenCL 2.x mostly supported now, but 1.2 is still lowest common denominator
= many more, e.g. FPGA SDKs by Intel (Altera), and Xylinx

16/32

The OpenCL Installable Client Driver (ICD) Loader

® allows multiple OpenCL installations to be installed and used next to each other
® applications link with a generic 1ibOpenCL.so

17/32

The OpenCL Installable Client Driver (ICD) Loader

® allows multiple OpenCL installations to be installed and used next to each other
® applications link with a generic 1ibOpenCL.so

/
| _usr/lib/
LlibOpenCL.so runtime loader looking into /etc/OpenCL/vendors
| _etc/0OpenCL/vendors/
intel64.icd.......... textfile with actual library name/path
amdocl64.icd textfile with actual library name/path
| opt/intel_ocl/lib/
Llibintelocl.so actual Intel implementation
| opt/AMDAPPSDK/1ib/
Llibamdochél.so actual AMD implementation

17/32

The OpenCL Installable Client Driver (ICD) Loader

® allows multiple OpenCL installations to be installed and used next to each other
® applications link with a generic 1ibOpenCL.so

/
| _usr/lib/
LlibOpenCL.so runtime loader looking into /etc/OpenCL/vendors
| _etc/0OpenCL/vendors/
intel64.icd.......... textfile with actual library name/path
amdocl64.icd textfile with actual library name/path
| opt/intel_ocl/lib/
Llibintelocl.so actual Intel implementation
| opt/AMDAPPSDK/1ib/
Llibamdoc164.so actual AMD implementation

® applications typically link to the loader, direct link is also possible
® only some loaders support OPENCL_VENDOR_PATH env. variable
= problematic for user-installation (modifying /etc/ requires root)

17/32

Compilation

OpenCL Header Files:
= avoid trouble: use reference headers, ship with project

= https://github.com/KhronosGroup/OpenCL-Headers

18/32

https://github.com/KhronosGroup/OpenCL-Headers

Compilation

OpenCL Header Files:
= avoid trouble: use reference headers, ship with project

= https://github.com/KhronosGroup/OpenCL-Headers

CMake: "find_package (OpenCL REQUIRED)"
® OpenCL CMake module only works in some scenarios
= the magic line (optional, shown here: bypass 1ibOpenCL. s0):

mkdir build.intel_16.1.1
cd build.intel_16.1.1

cmake -DCMAKE_BUILD_TYPE=Release -DOpenCL_FOUND=True -DOpenCL_INCLUDE DIR=../../
thirdparty/include/ -DOpenCL_LIBRARY=/opt/intel/opencl_runtime_16.1.1/0pt/
intel/opencl-1.2-6.4.0.25/1ib64/1libintelocl.so

make -j

18/32

https://github.com/KhronosGroup/OpenCL-Headers

Platform and Device Selection

® OpenCL API: lots of device properties can be queried
® simple and pragmatic: oclinfo tool = platform/device index

https://github.com/noma/ocl 19/32

https://github.com/noma/ocl

Platform and Device Selection

® OpenCL API: lots of device properties can be queried
® simple and pragmatic: oclinfo tool = platform/device index

Platform O:
NAME : AMD Accelerated Parallel Processing
VERSION: OpenCL 2.0 AMD-APP (1912.5)
Device 0:
NAME : Hawaii

VENDOR : Advanced Micro Devices, Inc.
VERSION: OpenCL 2.0 AMD-APP (1912.5)
Device 1:
NAME : Intel (R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
VENDOR : GenuineIntel
VERSION: OpenCL 1.2 AMD-APP (1912.5)

Platform 1:
NAME : Intel (R) OpenCL
VERSION: OpenCL 1.2 LINUX
Device 0:
NAME : Intel (R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

VENDOR: Intel(R) Corporation
VERSION: OpenCL 1.2 (Build 57)

https://github.com/noma/ocl 19/32

https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v self-contained executable for
V' #include directives production use

https://github.com/noma/ocl 20/32

https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime:

v" no host-code recompilation
V' #include directives

header
.cl

#include

kernel_
source
.l

https://github.com/noma/ocl

b) embedded source as string constant:

V' self-contained executable for
production use

20/32

https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v self-contained executable for
V' #include directives production use
header | _ _ _ __________.
.cl 1
1
. \
#include :
I
1
kernel_
source —— resolve__includes.sh
.cl

https://github.com/noma/ocl 20/32

https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v self-contained executable for
V' #include directives production use
header

.« - create raw string literal
R"str_not_in src(

#in(::lude : // input

)str_not_in_src"

kernel_
source —— resolve__includes.sh cl_to_hpp.sh
.cl

https://github.com/noma/ocl 20/32

https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header

.l - create raw string literal
R"str_not_in src(

#in(::lude : // input

)str_not_in_src"

kernel_
source —— resolve__includes.sh cl_to_hpp.sh
.cl

https://github.com/noma/ocl

kernel_
source
-hpp

20/32

https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header

.l ! - create raw string literal
! R"str_not_in src(
“include : // input
; E)str_not_in_src"

kernel_ kernel_
source ——| resolve_includes.sh cl_to_hpp.sh source
.cl .hpp

#include

kernel L
wrapper_|
class
-hpp/.cpp

https://github.com/noma/ocl 20/32

https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header | _ _ _ __________.
<l ! - create raw string literal
! R"str_not_in src(
#include : // input
! 1
1
1

)str_not_in_src"

kernel_ kernel_
source ——| resolve_includes.sh cl_to_hpp.sh source
.cl .hpp

#include

https://github.com/noma/ocl

kernel L
wrapper_|
class
-hpp/.cpp

20/32

https://github.com/noma/ocl

Handling Kernel Source Code

a) loading source files at runtime: b) embedded source as string constant:
v" no host-code recompilation v’ self-contained executable for
V' #include directives production use
header

.l - create raw string literal
R"str_not_in src(
// input
)str_not_in_src"

#include

https://github.com/noma/ocl

kernel_ kernel_
source — | resolve__includes.sh cl_to_hpp.sh source
.cl .hpp

#inc:lude

kernel L
wrapper_|
class
-hpp/.cpp

20/32

https://github.com/noma/ocl

Handling Kernel Source Code
a) loading source files at runtime:

v" no host-code recompilation
V' #include directives

header
.cl

#include

https://github.com/noma/ocl

b) embedded source as string constant:

v self-contained executable for
production use

- create raw string literal
R"str_not_in src(
// input
)str_not_in_src"

kernel_ kernel_
source — | resolve__includes.sh cl_to_hpp.sh source
.cl .hpp

#mc:lude

kernel L
wrapper_|
class
-hpp/.cpp

20/32

https://github.com/noma/ocl

Example OpenCL Runtime Configuration File

[opencl]

use first device of second platform
platform_index=1

device_index=0

enable zero copy buffers for CPU devices
zero_copy_device_types={cpu}

pass a custom include path to the OpenCL compiler
compile_options=-I../cl

load kernel source from file at runtime
kernel_file_heom_ode=../cl/heom_ode.cl
kernel_name_heom_ode=heom_ode

unset option, load embedded source
#kernel_file_rk_weighted_add=
#kernel_name_rk_weighted_add=

https://github.com/noma/ocl 21/32

https://github.com/noma/ocl

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- OpenCL 1.2 for hotspots
- modern C+ 11/14/17

- CMake for building

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

22/32

Interdisciplinary Workflow O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel
I\/Iodel (Mathematica) within Mathematica

- ODEs - domain scientist’s tool - replace some code
- PDEs - high level with OpenCL
- Graphs - symbolic solvers - compare results

- - arbitrary precision figure out numerics
- very limited performance - use accelerators in MM

C+ Host Distributed
Application Host Application

- start single node

- OpenCL 1.2 for hotspots
- modern C+ 11/14/17

- CMake for building

22/32

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

Distributed
Host Application

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14/17
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

22/32

OpenCL and Communication/MPI

Design Recommendation:

keep both aspects as independent as possible
® design code to be agnostic to whether it works on a complete problem instance or
on a partition

provide hooks to trigger communication in-between kernel calls

wrap needed parts of MPI in a thin, exchangeable abstraction layer

23/32

OpenCL and Communication/MPI

Design Recommendation:

keep both aspects as independent as possible
® design code to be agnostic to whether it works on a complete problem instance or
on a partition

provide hooks to trigger communication in-between kernel calls

wrap needed parts of MPI in a thin, exchangeable abstraction layer

Current trade-offs:
® communication introduces additional logical host-device transfers
= scaling starts slowly, e.g. two nodes might be slower than one
® a single process might not be able to saturate the network
= multiple processes per node sharing a device (CPU device: set CPU mask)
® pick one: zero-copy buffers or overlapping compute and communication
= either host (comm.) or device (comp.) own the memory at any point in time

= overlapping requires copies again 25

Data Transfer Paths

. . : . .
: : ! : :
OpenCL : application : fabric : fabric : application : OpenCL
driver code driver ! driver code driver
: : ! : :
1
] 1
E device ! device
o memory | memory
\
| : : : : 5 A
......... DAV A e DR e
: : . : :
¥ : : ! : : I
1
pinned mem host mem pinned X pinned mem host mem pinned
% device [.., ™ -~ s, ® fabric |— RDMA > fabric [_., 6 > 4, ® device
c c C c
£ buffer py memory py buffer buffer py memory py buffer

24/32

Data Transfer Paths

OpenCL
driver

device

device
memory

I

host

pinned

device

buffer

application
code

host
memory

DMA -~ T

mém
cpy

OpenCL
driver

device
memory

A
|

pinned
> device

I
1
fabric X fabric application
driver : driver code
1
1
1
I
can be avoided
in some cases
with OpenCL :
TN R S TR R R RREREEEREE EEEEE > DMA .
I : i
! :
pinned | pinned mem host mem
fabric — RDMA 3| fabric | qé)y > memory - cpé)y
buffer buffer : :

buffer

24 /32

Data Transfer Paths

. . : . .
: : ! : :
OpenCL : application : fabric X fabric : application : OpenCL
driver code driver ! driver code driver
: : ! : :
0 (Y 3!
% device { CUDA GPU-Direct RDMA } device
: : ! : :
© memory : can be avoided : : memory
: in some cases : :
I - : with OpenCL : : A
......... DMA‘ DMA
: : ! : :
4 : | : |
1
pinned mem Fost mem pinned | pinned mem host mem pinned
% device [.., ™ -~ s, ® fabric |— RDMA > fabric [_., 6 > 4, ® device
c C C C
2 butfer | o | ™Y | P buffer butfer | o | ™Y | P | buffer

24 /32

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)

125-
—— Intel OpenCL SDK
100- — AMDAPP SDK
—— PoCL
“,
c
S 75-
s
Qo
)
Q
@ 5.
g w0
€
2
25- IU
nlllmm 11111
o N
0 250 500 750 1000

particles per compute node

25/32

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)
125 -

~—— Intel OpenCL SDK
100 - — AMD APP SDK
—— PoCL

75-

50 -

runtime per iteration [s]

25-

0 250 500 750 1000
particles per compute node

25/32

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell) COSIM Runtime vs. Particle Count (2x Xeon, Haswell)
~—— Intel OpenCL SDK —— Intel OpenCL SDK
100- — AMD APP SDK — AMD APP SDK
— PoCL — PoCL
© Dy
c =
2 75 S
IS s
2 2
o] o]
o Q
(9] - (o)
EY E
s 52
25-
07 0-
0 250 500 750 1000 0 250 500 750 1000
particles per compute node particles per compute node

25/32

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)
125 -

~—— Intel OpenCL SDK

100- — AMD APP SDK
—— PoCL
=
c
S 75-
3
_Q
5]
o
(9] o
2 50
€
2
25-

0 250 500 750 1000
particles per compute node

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)

—— Intel OpenCL SDK

—— AMD APP SDK

—— PoCL
Dy
=
i=]
B -
5
= L]
g L
() Lad
£ 12
s

25

[: 384 workitems = 16 x 24 coresJ

0 250 500 750 1000
particles per compute node

25/32

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)

e different performance and 6 ”””“ ||| |
characteristics across OpenCL
implementations B = OpenCL. SDK
—— AMD APP SDK
—— PoCL
-
c
2
o a
ke |
3 _m"'
£ “
Se-

[: 384 workitems = 16 x 24 coresJ
0 250 500 750 1000
particles per compute node

25/32

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)

e different performance and 6 |||||||||||
characteristics across OpenCL
implementations

—— Intel OpenCL SDK
—— AMD APP SDK

® highest per-node-efficiency with 384 — PoCL
work-items per node with Intel SDK
= 16 = logical SIMD-width required

by Intel OpenCL vectoriser

IS

runtime per iteration [s]
N

[:> 384 workitems = 16 x 24 cores)

0 250 500 750 1000
particles per compute node

25/32

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)

e different performance and
characteristics across OpenCL
implementations

® highest per-node-efficiency with 384
work-items per node with Intel SDK

= 16 = logical SIMD-width required
by Intel OpenCL vectoriser

® work-items per node can
dramatically affect job runtime
= +1 work-item on a single node can
more than double job runtime

—— Intel OpenCL SDK
—— AMD APP SDK
—— PoCL

IS

runtime per iteration [s]
N

[:> 384 workitems = 16 x 24 cores)

0 250 500 750 1000
particles per compute node

25/32

Benchmark Results: COSIM load imbalance (Xeon)

COSIM Runtime vs. Particle Count (2x Xeon, Haswell)

e different performance and 6 |||||||||||
characteristics across OpenCL
implementations

—— Intel OpenCL SDK
—— AMD APP SDK

® highest per-node-efficiency with 384 — PoCL
work-items per node with Intel SDK
= 16 = logical SIMD-width required

by Intel OpenCL vectoriser

IS

® work-items per node can
dramatically affect job runtime
= +1 work-item on a single node can
more than double job runtime

runtime per iteration [s]
N

= benchmark, adapt job size, pad [:> 384 workitems = 16 x 24 cores)

work-items to n x 16 0 250 500 750 1000
particles per compute node

25/32

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

Distributed
Host Application

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14/17
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

26 /32

Interdisciplinary Workflow

Mathematlcal High-Level Prototype OpenCL kernel
Model (Mathematica) ithi

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL
compare results
figure out numerics

use accelerators in MM

Distributed Optimisation /
Host Application Production Runs

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14/17
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

J

O domain experts O computer scientists

within Mathematica]_ o

26 /32

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

Distributed Optimisation /
Host Application Production Runs

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14/17
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

- always collect perf. data

- profile/tune code

- add performance tweaks

- use device-specific
kernel variants if needed

O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

26 /32

DM-HEOM Benchmarks: Work-item Granularity

Impact of Work-item Granularity
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

6000 -

Granularity
4000 -

. Matrix
. Element
2000 -
-1 - |

2SKL2HSW KNL K40 W8100 2SKL2HSW KNL K40 W8100

average solver step runtime [ms]

27/32

DM-HEOM Benchmarks: Work-item Granularity

Impact of Work-item Granularity

= fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

E

(0]

£ 6000-

g

o Granularity
£ 4000 - . Matrix
g Element
S 2000

4 N

©

o =l nll o

> 1 1 1 1 1 1 1

© 2 SKL 2 HSW KNL [K40 W8100 | 2SKL2HSW KNL |K40 W8100

[:> CPUs: 1.2x to 1.35x speedup for Matrix granularity]

27/32

DM-HEOM Benchmarks: Work-item Granularity

Impact of Work-item Granularity
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

6000 -
Granularity

Matrix
. Element

4000 -

oo 1 |

2 SKL 2 HSW KNL

2 SKL 2 HSW KNL

average solver step runtime [ms]

K40 W8100 K40 W8100

[=> GPUs: up to 6.7x (K40) and 7.2x (W8100) speedup for Element granularityJ

27/32

DM-HEOM Benchmarks: Memory Layout

Impact of Configurable Memory Layout
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

1500 -
1000 -

500 -

0-

average solver step runtime [ms]

2SKL 2 HSW KNL 2SKL 2 HSW KNL

28/32

DM-HEOM Benchmarks: Memory Layout

Impact of Configurable Memory Layout
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

1500 -

1000 -

500 -

average solver step runtime [ms]

2SKL 2 HSW KNL 2SKL 2 HSW KNL

(= SKL and HSW: 1.3x to 2.4x speedup with AoSoA |

28/32

DM-HEOM Benchmarks: Memory Layout

Impact of Configurable Memory Layout
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

1500 -

1000 -
- L

2 SKL 2 HSW

average solver step runtime [ms]

KNL 2SKL 2 HSW KNL

(= KNL: 1.6x to 2.8 speedup with AoSoA |

28/32

DM-HEOM Benchmarks: Performance Portability

Performance Portability Relative to Xeon (SKL)
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg Hardware

. 2x Xeon (SKL)
. 2x Xeon (HSW)

1000 1 . ex. from FLOPS
Xeon Phi (KNL)
. ex. from FLOPS
500 -
. Tesla K40
. I . ex. from FLOPS
. " FirePro W8100

SKL HSW KNL K40 W8100 SKL HSW KNL Kéo weioo | ex.from FLOPS

average solver step runtime [ms]

29/32

DM-HEOM Benchmarks: Performance Portability

average solver step runtime [ms]

Performance Portability Relative to Xeon (SKL)
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg ‘Hardware

1000 -

500 -

0-1

. 2x Xeon (SKL)

SW KNL K40 W8100

SKL HSW KNL K40 W8100 SII(L

=> SKL (Xeon) is the reference]

2x Xeon (HSW)
ex. from FLOPS
Xeon Phi (KNL)
ex. from FLOPS
Tesla K40
ex. from FLOPS
FirePro W8100
ex. from FLOPS

29/32

DM-HEOM Benchmarks: Performance Portability

Performance Portability Relative to Xeon (SKL)
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg Hardware
. 2x Xeon (SKL)

. 2x Xeon (HSW)

1000 1 . ex. from FLOPS
Xeon Phi (KNL)
. ex. from FLOPS
500 -

I Tesia K40

. ex. from FLOPS
FirePro W8100

o-I l

SKL HSW KNL K40 W8100 SKL HSW KNL Kéo weioo |B ex.from FLOPS

average solver step runtime [ms]

)

= gray bars are expected runtimes extrapolated from peak FLOPS]

29/32

DM-HEOM Benchmarks: Performance Portability

Performance Portability Relative to Xeon (SKL)
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg Hardware

. 2x Xeon (SKL)
. 2x Xeon (HSW)

10001 . ex. from FLOPS
Xeon Phi (KNL)
. ex. from FLOPS
500 -
. Tesla K40
I . ex. from FLOPS
0. " FirePro W8100

SKL HSW KNL K40 W8100 SKL HSW KNL Kéo weioo | ex.from FLOPS

average solver step runtime [ms]

[=> Older Haswell Xeon exceeds expectations, due to better OpenCL support}

29/32

DM-HEOM Benchmarks: Performance Portability

average solver step runtime [ms]

Performance Portability Relative to Xeon (SKL)
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg

1000 -
500 - i

SKL HSW KNL K40 W8100 SKL HSW KNL K40 W8100

[:> Good: within 30 % of expectation]

Hardware

. 2x Xeon (SKL)

. 2x Xeon (HSW)

. ex. from FLOPS
Xeon Phi (KNL)

. ex. from FLOPS

. Tesla K40

. ex. from FLOPS

" FirePro W8100

. ex. from FLOPS

29/32

DM-HEOM Benchmarks: Performance Portability

Performance Portability Relative to Xeon (SKL)
fmo_22baths_d3.cfg Ihcii_1bath_d8.cfg Hardware

‘ . 2x Xeon (SKL)

. 2x Xeon (HSW)
10001 . ex. from FLOPS

Xeon Phi (KNL)
. ex. from FLOPS

5001 . Tesla K40

. l I . ex. from FLOPS

. " FirePro W8100

SKL HSW KNL K40 W8100 SKL HSW KNL Kéo weioo | ex.from FLOPS

average solver step runtime [ms]

[=> KNL and K40 sensitive to irregular accesses from extreme coupling in this scenario.}

29/32

Interdisciplinary Workflow

- ODEs
- PDEs
- Graphs

C+ Host
Application

- start single node

- domain scientist’s tool

- high level

- symbolic solvers

- arbitrary precision

- very limited performance

replace some code
with OpenCL

compare results

figure out numerics
use accelerators in MM

Distributed Optimisation /
Host Application Production Runs

- scale to multiple nodes

- OpenCL 1.2 for hotspots - partitioning, balancing,

- modern C+ 11/14/17
- CMake for building

neighbour exchange, ...

- wrapped MPI 3.0

- always collect perf. data

- profile/tune code

- add performance tweaks

- use device-specific
kernel variants if needed

O domain experts O computer scientists

Mathematlcal High-Level Prototype OpenCL kernel o
I\/Iodel (Mathematica) within Mathematica

30/32

Conclusion

General
® work interdisciplinary

® put portability first

31/32

Conclusion
General
® work interdisciplinary
® put portability first

OpenCL

® highest portability of available parallel programming models
® integrates well into interdisciplinary workflow

® runtime compilation allows compiler-optimisation with runtime-constants
® performance portability is not for free:

= e.g. via configurability of work-item granularity and memory layout
= worst case: multiple kernels, still better than multiple programming models

31/32

Conclusion
General
® work interdisciplinary
® put portability first

OpenCL

® highest portability of available parallel programming models
® integrates well into interdisciplinary workflow
® runtime compilation allows compiler-optimisation with runtime-constants

® performance portability is not for free:

= e.g. via configurability of work-item granularity and memory layout
= worst case: multiple kernels, still better than multiple programming models

Caveats

e vendors are slow in implementing new standards = use OpenCL 1.2 + complain
® interoperability with communication APIs not addressed by current standard

31/32

EoP

Thank you.

Feedback? Questions? Ideas?

DFG @ . H13N

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) project RE 1389/8-1
and the "Research Center for Many-Core HPC" at ZIB, an Intel Parallel Computing Center.
The authors acknowledge the North-German Supercomputing Alliance (HLRN) for providing
compute resources.

32/32

