No Instruction Computing Using Pointers and

Operations in Registers for Adaptable
Architecture

IXPUG Annual Meeting 2020

Dr. Nagi Mekhiel
Department of Electrical, Computer and Biomedical Engineering
Ryerson University, Toronto, CANADA
nmekhiel@ee.ryerson.ca

Introduction

Current architectures depend on delivering maximum numbers of
instructions per cycle

Performance more dependent on memory bandwidth

Must use program counter each cycle to fetch instructions from
memory

Issuing parallel instructions is complicated

Operations have more localities than data and could move to
registers

No Instructions Computing Concept
It uses load to transfer operations and operands from memory
to the register file
It eliminates the use of a program counter that points only to
one instruction at a time
Single operation register pointer stores multiple pointers each
points to one operation in another lower level registers
The last field of register pointer points to the next operation
register that loads the next block of code to be executed
It executes multiple operations in parallel if the mode in
operation pointer indicates a parallel operation

‘"he Concept and Organization

Addresd ™MEMORY

H pointers, operations,operands

L1 Instuction Cache

L] L]

% hegister Pointer I

| :Operation Pointer Registerl

| :Operation Register |

| Operation Register I

Operation Register

:Dperation Register

Register File

Processor

Example of an application
+ for(i=0; i<N;i++){A[i]=A[i]+B;}.

‘'OPPR .Operation Pointer Register

NOPR s |

| e
/M

@
o

oa

F

ors| or2 | <
1w, R10, 2000(R12) \

R2 ADD R14, R10, R13

R3 SW R14, 2000(R12)

R4 ADD R12, R12, #4

R5 BNEQ R12, R20, R1
[Re

1w R7, 1000, OPPR

Performance Evaluation

« for(i=0; i<N;i++){A[i]=A[i]+B;}. Register access=1 cycle, Memory access = 2 cycle
Conventional Architecture

Total time = 5Nx1 cycle for executing instructions + 2Nx2 cycles for data + 5Nx2
cycle for instructions memory= 19N cycles

Memory BW requirements = (2N+5N)x4B/19N= 1.5B/cycle
No Instructions Computing

Total time= 5Nx1 cycle for executing instructions + 6x2 cycles to load the pointer and
operations + 2Nx2 cycles for data load and store= (9N + 12) cycles

Memory BW requirements= 2Nx4B/(9N+12) = .89 B/cycle
Gain:

Performance gain= 19N/(9N+12) = about 200% and Memory BW reduction =
1.5B/.89 B= 168 %

Conclusions

* No Instructions Computing eliminates the use of program counter and
reduces memory bandwidth requirements

* |tis adaptable and supports SIMD and parallel operations Parallel
operations from a single operation register pointer eliminates the overhead

of synchronization
* Future work needs to implement it using suitable technology like FPGA and

develop software tools to run actual applications

References
1-Nagi Mekhiel, Instructions with Indirect Register Indexing for Multiple and

Exponential Operations to Improve Performance?, The 12thlEEE International
Conference on Computer Engineering and Systems (ICCES 2018), Dec 18-19 2018,

Cairo, Egypt

2-Nagi Mekhiel, Take the ‘No Instruction’ road past memory straits, EE Times Aug
23 1999

