
No Instruction Computing Using Pointers and

Operations in Registers for Adaptable
Architecture

IXPUG Annual Meeting 2020

Dr. Nagi Mekhiel
Department of Electrical, Computer and Biomedical Engineering

Ryerson University, Toronto, CANADA
nmekhiel@ee.ryerson.ca

• Current architectures depend on delivering maximum numbers of
instructions per cycle

• Performance more dependent on memory bandwidth
• Must use program counter each cycle to fetch instructions from

memory
• Issuing parallel instructions is complicated
• Operations have more localities than data and could move to

registers

Introduction

• It uses load to transfer operations and operands from memory
to the register file

• It eliminates the use of a program counter that points only to
one instruction at a time

• Single operation register pointer stores multiple pointers each
points to one operation in another lower level registers

• The last field of register pointer points to the next operation
register that loads the next block of code to be executed

• It executes multiple operations in parallel if the mode in
operation pointer indicates a parallel operation

No Instructions Computing Concept

The Concept and Organization

Example of an application
• for(i=0; i<N;i++){A[i]=A[i]+B;}.

Performance Evaluation
• for(i=0; i<N;i++){A[i]=A[i]+B;}. Register access=1 cycle, Memory access = 2 cycle

Conventional Architecture

Total time = 5Nx1 cycle for executing instructions + 2Nx2 cycles for data + 5Nx2

cycle for instructions memory= 19N cycles

Memory BW requirements = (2N+5N)x4B/19N= 1.5B/cycle

No Instructions Computing

Total time= 5Nx1 cycle for executing instructions + 6x2 cycles to load the pointer and

operations + 2Nx2 cycles for data load and store= (9N + 12) cycles

Memory BW requirements= 2Nx4B/(9N+12) = .89 B/cycle

Gain:

Performance gain= 19N/(9N+12) = about 200% and Memory BW reduction =

1.5B/.89 B= 168 %

Conclusions
• No Instructions Computing eliminates the use of program counter and

reduces memory bandwidth requirements
• It is adaptable and supports SIMD and parallel operations Parallel

operations from a single operation register pointer eliminates the overhead
of synchronization

• Future work needs to implement it using suitable technology like FPGA and
develop software tools to run actual applications

References
1-Nagi Mekhiel, Instructions with Indirect Register Indexing for Multiple and

Exponential Operations to Improve Performance?, The 12thIEEE International

Conference on Computer Engineering and Systems (ICCES 2018), Dec 18-19 2018,

Cairo, Egypt

2-Nagi Mekhiel, Take the ‘No Instruction’ road past memory straits, EE Times Aug

23, 1999

