NEXT GENERATION INTEL MPI PRODUCT FOR NEXT
GENERATION SYSTEMS:

INTEL” MPI LIBRARY 2019 FEATURES AND
. OTIMZATIONTEGH IllUES

A\ SR

‘vm}m "ia 1&

" HLAUS: I]IETERI]ERTEL[INTEL] \
|xpu NUALBUNFERENBEZIHB CERN TR

| \\\m A ? P 17
\m \.,\"‘u\gnm\x/ "

-.".o" 4 :h

INTEL" MPI LIBRARY

Intel® MPI Library is a multifabric message-passing library that
implements the open-source MPICH specification. Use the library
to create, maintain, and test advanced, complex applications that
perform better on HPC clusters based on Intel® processors.

= Develop applications that can run on multiple cluster
interconnects chosen by the user at run time.

» Quickly deliver maximum end-user performance
without having to change the software or operating
environment.

= Achieve the best latency, bandwidth, and scalability
through automatic tuning for the latest Intel®
platforms.

= Reduce the time to market by linking to one library
and deploying on the latest optimized fabrics.

Learn More - software.intel.com/intel-mpi-library

Applications

CFD | Crash | Climate | OCD | BIO | Other...

Develop applications for one fabric

Intel® MPI Library

Select interconnect fabric at runtime

iWarp/| Shared ...Other
RoCE | Memory | Networks
Fabrics

TCP/IP | Omni-Path | InfiniBand

Achieve optimized MPI performance

Cluster

Intel® MPI Library = One MPI library to develop, maintain &
test for multiple fabrics

software.intel.com/intel-mpi-library

NEXT GENERATION MPI - INTEL" MPI LIBRARY 2019

Next generation product goals:
= Low instruction count on a critical path
= Remove non scalable structures

= Better hybrid programming models
support (MPI+X)

= Better collective operations
infrastructure

Intel® MPI Library 2019 key features:

Based on a new MPICH/CH4/OFI
architecture

New Mellanox and Amazon AWS support
New auto tuning capabilities

Enhanced support for hybrid
programming models

o New MPI THREAD MULTIPLE
extension

o New asynchronous progress
New SHM transport
New collective operations

Z2\J r g
v:’g'f'" S

MPICH/CH4/OFI ARCHITECTURE IMPROVEMENTS

Key Features
» Expose native hardware support to the MPI layer
» Reduction in number of instructions (1.5x lower instruction count on MPI levels)

» (CH4 uses functions that can be inlined
= CH3 was based on function pointers

* Removal of non-scalable data structures

= Driven by Argonne National Laboratory

= Optimized data structures used to map ranks in a communicator to a global rank
= Enhanced path for MPI+X (threads) models
* OFI netmod

= Directly maps MPI constructs to OFI features as much as possible

OFI community

LIBFABRIC/OPEN FABRIC INTERFACES (OFI) STACK

MPI SHMEM PGAS

Libfabric Enabled Applications

libfabric
Control Communication Completion Data Transfer
| Discovery | Connection Mgmt Event Queues Message Queues RMA
Address Vectors Counters Tag Matching | Atomics
OFI Provider

Discovery Connection Mgmt Event Queues Message Queues

Address Vectors Counters Tag Matching

Y h 4

http://libfabric.org/

INTEL® MPI LIBRARY 2019 SW STACK/ECOSYSTEM

| | | | | |

HW [Aries } { Infiniband } [il\:i\gaé‘é’ } {AWS EFA} [Eltg’o'c';g'f’] { Intel OPA } {TrueScale]

http://libfabric.org/

NN (77

IR TR ALY) i"‘l"i‘. 13 -‘\“’(}! ..
e 2 e O NN

//

i,

MELLANOX SUPPORT IMPROVEMENT

el » New OFI/mlx provider (technical preview)
= The provider is part of IMP| 2019 U5 distribution

e e e e = Available via FI_PROVIDER=mIx
Validated with Mellanox EDR/HDR

[mix shim] Generic verbs

= Requires UCX 1.5+

Me”anOX InfiniBand Verbs

UCX Mellanox,

RoCE

Mellanox

VN o
'»,&\Q %
) R

.
.

',
- 255 ¥
)
Y |

NN
'}\ '!P ‘ \ .4'\‘:\':“ ! \t'\ \' ‘ \ f' '?;I o/

AMAZON AWS/EFA SUPPORT

Intel = New OFl/efa provider
Amazon = Part of AWS environment
Open Fabrics Interfaces = The provider is going to be shipped as part
B —— of IMPI distribution in the next IMPI
i release.
[Elastic Fabric Adapter (EFA) Driver || = Intel MPI 2019 U5 OOB tuning for OFI/efa

Amazon Elastic Fabric Adapter

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html

it s\\\w. N "
U

USABILITY FEATURES

* New tuning data is separated from the library:
https://software.intel.com/en-us/node/807848

New auto tuning capability (autotuner) MsEm e L

[0] MPI startup(): I_MPI PIN DMAIN environment variable is not

- N ' o supported.
ew spell checker logic
. L. I MPI PIN UNIT
= New impi_info tool (MPI_T based) DErEm
[0] MPI stgrtug():_To check the list of supported variables, use
the impi info utility or refer to https://software.intel.com/en-
us/mpi-library/documentation/get-started.

$ impi info | head -10
DEFAULT VALUE | DATA TYPE

|I_MPI_PIN MPI_CHAR
|I_MPI_ PIN SHOW REAL MASK MPI INT

|I_ MPI PIN PROCESSOR LIST not defined MPI CHAR
|I_MPI PIN PROCESSOR EXCLUDE LIST not defined MPI CHAR
|I_ MPI_ PIN CELL unit MPI CHAR

|I_MPI_PIN RESPECT CPUSET on MPI CHAR
|I_MPI_ PIN RESPECT HCA on MPI CHAR
|I MPI PIN DOMAIN auto:compact MPI CHAR

1714

Py &
S]
j"“'.’\i,'

https://software.intel.com/en-us/node/807848

INTEL" MPI LIBRARY TUNING APPROACHES

Micro benchmark tuning

Application tuning

Easy of use

Cluster time

Adoption to environment

mpitune

mpitune/
fast tuner

autotuner

INTEL” MPI LIBRARY 2019 AUTOTUNER TUNING FLOW

v

\ 4

\ 4

\ 4

Execution timeline

\ 4

= No extra calls. Pure application driven tuning
= The procedure is performed for each message size and for each communicator

AUTOTUNER COMMUNICATOR SPECIFIC TUNING

| MPI_COMM_WORLD |

| COMM_1 | | COMM_2 |

Each communicator has its own tuning. (E.g. COMM_1 and COMM_2 have independent tuning)
NN

SEMEERE LR ERIOL
ll‘; —"- .‘\. AN N \ i N
' SRR NN R B
1R M 1% X

GET STARTED WITH AUTOTUNER

Step 1 — Enable autotuner and store results (store is optional):

$ export I_MPI TUNING MODE=auto
S export I _MPI TUNING BIN DUMP=./tuning results.dat
$ mpirun -n 96 -ppn 48 IMB-MPI1 allreduce -iter 1000,800 -time 4800

Step 2 — Use the results of autotuner for consecutive launches (optional):

S export I _MPI TUNING BIN=./tuning results.dat
$ mpirun -n 96 -ppn 48 IMB-MPI1 allreduce -iter 1000,800 -time 4800

NOTE: You may adjust number of tuning iterations (minimal overhead/maximum precision balance) and use
autotuner with every application run without results storing.

ENVIRONMENT VARIABLES. MAIN FLOW CONTROL

|_MPI_TUNING_MODE=<auto|auto:application|auto:cluster> (disabled by default)
I_MPI_TUNING_AUTO_ITER_NUM=<number> Tuning iterations number (1 by default).

I MPI_TUNING_AUTO_SYNC=<0|1> Call internal barrier on every tuning iteration (disabled by
default)

| MPI_TUNING_AUTO_WARMUP_ITER_NUM=<number> Warmup iterations number (1 by
default).

NOTE: Assume that there are around 30 algorithms to be iterated. E.g. Application has 10000 invocations of
MPI_Allreduce 8KB. For full tuning cycle I_MPI_TUNING_AUTO_ITER_NUM may be in 30 to 300 (if there is
no warmup part) range. High value is recommended for the best precision. Iteration number for large
messages may depend on I_MPI_TUNING_AUTO_ITER_POLICY_THRESHOLD .

I_MPI_TUNING_AUTO_SYNC is highly recommended for tuning file store scenario.

ENVIRONMENT VARIABLES. TUNING SCOPE AND STORAGE CONTROL

I_MPI_TUNING_AUTO_COMM_LIST=<comm_id_1, ... , comm_id_k> List of communicators to
be tuned (all communicators by default)

| MPI_TUNING_AUTO_COMM_USER=<0|1> Enable user defined comm_id through MPI_Info
object. (disabled by default)

| MPI_TUNING_AUTO_COMM_DEFAULT=<0|1> Default/universal comm_ids. (disabled by
default)

| MPI_TUNING_AUTO_STORAGE_SIZE=<size> Max per-communicator tuning storage size
(512KB by default)

NOTE: You may use Intel® VTune™ Amplifier's Application Performance Snapshot for per communicator MPI
cost analysis and narrow tuning scope.
|_MPI_TU

INTEL® VTUNE"™ AMPLIFIER'S APPLICATION PERFORMANCE SNAPSHOT (APS) PER
COMMUNICATOR ANALYSIS

1. Source apsvars.sh:
S source <path to aps>/apsvars.sh

2. Gather APS statistics:
S export MPS STAT LEVEL=5
$ export APS COLLECT COMM IDS=1

$ mpirun -n 4 -ppn 2 aps IMB-MPI1 allreduce -iter 1000,800

3. Generate an APS report:
$ aps-report aps result 20190228/ -1FE

https://software.intel.com/sites/products/snapshots/application-snapshot/

https://software.intel.com/sites/products/snapshots/application-snapshot/

INTEL® VTUNE™ AMPLIFIER'S APPLICATION PERFORMANCE SNAPSHOT (APS) PER
COMMUNICATOR ANALYSIS

4. Get the results:

| Communicators used in the application

| Communicator Id Communicator Size Time (Rank Average) (sec) Ranks

Eeimescomeumisezessl < EmGlo.es 0,123
eieseorsasisezzos 4 0.5 015 o123
eeseorsazeassesz 2 owsiw.zs o
eieseorsazeasssze 2 o1 w00 o1
eieseorsasisezerz 4 .00 0000 o123

\\\ T

INTEL® VTUNE"™ AMPLIFIER'S APPLICATION PERFORMANCE SNAPSHOT (APS)
INTEROPERABILITY

5. Specify communicators to be tuned:

$ export I MPI TUNING AUTO COMM LIST=4611686018431582688
$ export I MPI TUNING MODE=auto

$ mpirun -n 96 -ppn 48 IMB-MPI1 allreduce -iter 1000,800 -time 4800

NOTE: I_MPI_TUNING_AUTO_ITER_POLICY may impact tuning cycle for large messages. Please check that
you have enough application level invocations

LN
e

MULTIPLE ENDPOINTS{ASYNCHRONOUS
 PROGRESS

%Y
0 \}: . oo dfod / A L |
Wb NG ey Y. .,

-?! ‘.)\4‘ {“ ~ ?- v. A‘I‘.

\ S s

N\ X AL y &) N /
| W N, 2a
,\\\-\.\ > rza(11';) prs Sl

N

NN e

N\ \
f ._ ‘ ‘\‘\l\t\\' Ii l‘

<+

ENHANCED SUPPORT FOR HYBRID PROGRAMMING MODELS

= New MPI_THREAD_MULTIPLE model extension Application Process
= Available with release_mt library version:
|_MPI_THREAD_SPLIT=1 QLSS T aai0] B Thread(1] [Thread(2]

Threads

= New asynchronous progress engine design

MPI API

OFI OFI EP[0] OFI EP[1] OFI EP[2]

HW HW CX[0] HW CX[1] HW CX[2]

OFI EP - OFIl endpoint
HW CX - Independent HW context

N

MULTIPLE ENDPOINTS BASED FEATURES IN INTEL™ MPI LIBRARY 2019

* Thread-split
= Decrease threading computation imbalance - communicate as soon as data is ready, don’t
wait for the slowest thread
= |mprove interconnect saturation from single MPI rank (Intel® Omni Path Fabric, InfiniBand
and Ethernet are supported)
= Avoid implied bulk synchronization threading barriers and overhead on parallel sections
start/stop

= Asynchronous progress threads
= Offload communication from application threads to MPI progress threads
* |mprove computation/communication overlap
= Parallelize communication by multiple MPI progress threads

Both features are available only for:

= Linux

= |_MPI_FABRICS=0fi

= release_mt (non default version)
" I 4 e “‘ S

Thread-split

Asynchronous progress threads

[Application Thread 0 } [Application Thread 1 }

AT<N> - Application Thread #N
- MPT<N> - MP! Progress Thread #N

THREAD-SPLIT - STRONG SCALING CODE MODIFICATIONS

1. #define N 2 1. #define N 2

2. 2.

3. 1int main () { 3. 1int main () {

4., int i; 4. int i, provided;

5 int buffer[N]; 5. int buffer[N];

6 6.

7 7. MPI Comm comms [N];

8. MPI Init (NULL, NULL); 8. MPI Init thread(NULL, NULL, MPI_THREAD MULTIPLE, &provided);
9. for (i = 0; i < N; 1i++)

10. MPI Comm dup (MPI COMM WORLD, &comms[i]);
11.

12. #pragma omp parallel for num threads (N) .#pragma omp parallel for num threads (N)

13. for (i = 0; i < N; i++) { for (i = 0; i < N; i++) {

14. // threaded partial computation // threaded partial computation

15. // i1-th thread contributes to buffer[i] // i-th thread contributes to buffer[i]
l6.

17.

18.

19. }

20.

21. // single-threaded global communication // threaded partial communication

22. MPI Allreduce (buffer, buffer, N, MPI INT, MPI Allreduce (&buffer[i], &buffer[i], 1, MPI INT,
23. MPI SUM, MPI_COMM WORLD) ; MPI SUM, comms[i]);

24. }

25. MPI Finalize(); MPI Finalize();

26. return 0; return 0;

L

S
s

fjw
|

ASYNCHRONOUS PROGRESS THREADS - STRONG SCALING CODE MODIFICATIONS

1. #define N #define N

2. #define CHUNK SZ (1024) 2. #define CHUNK SZ (1024)

3. 3

4. int main () 4. int main ()

5. { Do {

6. MPI Request request; 6 MPI Request requests|[N];

7. MPI Status status; 7 MPI Status statuses|[N];

8. int sbuf [N*CHUNK SZ], rbuf[N*CHUNK SZ]; 8. int sbuf [N*CHUNK SZ], rbuf[N*CHUNK SZ];

9. int idx; 9. int idx;

10 10

11. MPI_Init (NULL, NULL); 11. MPI_Init (NULL, NULL);

12 12

13. 13. MPI Info info;

14. 14. MPI Comm comms [N];

15. 15. char thread id str[l6];

16. 16. MPI Info create(&info);

17 17

18. 18. for (idx = 0; idx < N; idx++) {

19. 19. MPI Comm dup (MPI COMM WORLD, &comms[idx]) ;
20. 20. sprintf (thread id str, "&%d", idx);

21. 21. MPI Info set(info, "thread id", thread id str);
22. 22. MPI Comm set info (comms[idx], info);

23. 23. }

24 . 24 . MPI Info free (&info);

25. 25

26. 26. for (idx = 0; idx < N; idx++) {

27. MPI Tallreduce (sbuf, 27. MPI Iallreduce (send buffer + idx * CHUNK SZ,
28. rbuf, 28. recv_buffer + idx * CHUNK SZ,
29. N * CHUNK_SZ , MPI INT, MPI_SUM, 29. CHUNK_SZ , MPI INT, MPI_SUM,
30. MPI COMM WORLD, &request); 30. comms [idx], &requests[idx]);
31. 31. }

32. MPI Wait (request, status); 32. MPI Waitall (N, requests, statuses);

33. MPI Finalize(); 33. MPI Finalize();

34, return O;

e AERANRY

AN
e TN

\‘
\‘«
\

DOCUMENTATION

Developer Guide

https://software.intel.com/en-us/mpi-developer-quide-linux-multiple-endpoints-support

https://software.intel.com/en-us/mpi-developer-quide-linux-asynchronous-progress-control

Developer Reference

https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-multi-ep

https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-asynchronous-progress-
control

Code examples
$I_MPI_ROOT/doc/examples

https://software.intel.com/en-us/mpi-developer-quide-linux-code-examples

https://software.intel.com/en-us/mpi-developer-guide-linux-multiple-endpoints-support
https://software.intel.com/en-us/mpi-developer-guide-linux-asynchronous-progress-control
https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-multi-ep
https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-asynchronous-progress-control
https://software.intel.com/en-us/mpi-developer-guide-linux-code-examples

THREAD-SPLIT. BIBAND

$ source <impi 2019 install path>/intel64/bin/mpivars.sh release mt

= 1 thread:

S OMP_NUM THREADS= 1 OMP PLACES=cores I MPI THREAD SPLIT=1 I MPI THREAD RUNTIME=openmp mpirun -n 2 -
ppn 1 -hosts hostl,host2 IMB-MT —thread level multiple bibandmt -count 4,8,16,64,256,1024,4096 -
repeat 10000 -datatype char —w1ndow_51ze 64

= 4 threads:

S OMP_ NUM THREADS=4 .. -window size 16

IMB-MT bibandmt. Msg/sec ratio. Higher is better

N Performance results are based on testing as of June 2019 and may not reflect all publicly available security
3.5 updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads
used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
3 tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult
2.5 other information and performance tests to assist you in fully evaluating your contemplated purchases, including
'8 5 = 1 thread the performance of that product when combined with other products. For more complete information visit
© http://www.intel.com/benchmarks.
15 M 4 threads
Configuration:
1 Testing by Intel as of June, 2019. 2 nodes
Hardware: Intel® Xeon® Gold 6252 CPU @ 2.10GHz; 192 GB RAM. Intel® Turbo Boost Technology and
0.5 Hyperthreading Technology enabled.
Interconnect: Intel® Omni-Path Host Fabric Interface

0 Software: RHEL* 7.6; IFS 10.9.0.0.210-957.12.2-2.10.6; Libfabric distributed with Intel® MPI 2019 Update 4; Intel®
1024 4096 MPI Library 2019 Update 4

ratio

ASYNCHRONOUS PROGRESS THREADS. IALLREDUGE

$ source <impi 2019 install path>/intel64/bin/mpivars.sh release mt

= default

$ I_MPI PIN PROCESSOR LIST=4 mpirun -n 2 -ppn 1 -hosts hostl,host2 IMB-NBC -thread level multiple

iallreduce -msglog 15:20

= 1 thread:

$ I_MPI_ASYNC PROGRESS=1 I _MPI ASYNC PROGRESS_ PIN=10

IMB-NBC iallreduce. Overall time ratio. Higher is better

2.5

1.
B default
1 thread
0.
0

32768 65536 131072 262144 524288 1048576

v

[EnN

(6]

Performance results are based on testing as of June 2019 and may not reflect all publicly available security
updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads
used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including
the performance of that product when combined with other products. For more complete information visit
http://www.intel.com/benchmarks.

Configuration:

Testing by Intel as of June, 2019. 2 nodes

Hardware: Intel® Xeon® Gold 6252 CPU @ 2.10GHz; 192 GB RAM. Intel® Turbo Boost Technology and
Hyperthreading Technology enabled.

Interconnect: Intel® Omni-Path Host Fabric Interface

Software: RHEL* 7.6; IFS 10.9.0.0.210-957.12.2-2.10.6; Libfabric distributed with Intel® MPI 2019 Update 4; Intel®
MPI Library 2019 Update 4

.

USAGE IN APPLICATIONS

Thread-split:

= VASP (https://techdecoded.intel.io/resources/improving-vasp-materials-simulation-
performance)

= GRID (https://github.com/paboyle/Grid/wiki/Dirac-ITT-Benchmarks)

= QCD (https://www.rdmag.com/news/2019/04/optimizing-network-software-advance-scientific-
discovery)

= BQCD

Asynchronous progress threads:

= |ntel® Machine Learning Scaling Library (https://github.com/intel/MLSL)
= GeoFEM

https://techdecoded.intel.io/resources/improving-vasp-materials-simulation-performance
https://github.com/paboyle/Grid/wiki/Dirac-ITT-Benchmarks
https://www.rdmag.com/news/2019/04/optimizing-network-software-advance-scientific-discovery
https://github.com/intel/MLSL

J

4

2
I 4

(R
4] :‘\‘\\ \(\
TR P /;t’h" ' \\3’\} _‘

I L

i

2 ! .‘ h H 4 ’;‘
: e —:.;__:. - — -t el ¥ /
N e Ky
’ 4:\."1.? B 0! " l.-.'... ‘ | A // M

R %\\\\ W > ‘/ /
- Y \'»-" o
VO ,{,

SHM HEAP INFRASTRUCTURE

= SHM pt2pt acceleration
= Removes copy-in phase from pt2pt communication
= Efficient memory allocation mechanism
= Since kernel 4.7 we may get huge pages with shared pages as well

= Multirail/multilead topology aware collective operations (experimental)
= Eliminates copy-in phase of topology aware collective operations
= Allows ranks to share data w/o extra cost

SHM HEAP USE CASE

Process A Process B

Process A Process B

MPI_Init

Any memA

MPI_Send (memA) MPI_Recv

SHM
(mmaped
region)

MPI_Finalize

MPI_Init

MPI_Alloc_mem (memA) Any memB

MPI_Send (memA) MPI_Recv

SHM
(mmaped
region)

MPI_Finalize

1714

Py &
S]
i'“"ii,'

GET STARTED WITH SHM HEAP

Basic way 1 (application w/ MPI_Alloc_mem) — Enable SHM HEAP

$ export I _MPI SHM HEAP=1
$ mpirun -n 36 -ppn 36 IMB-MPI1 alltoall -iter 1000,800 -time 4800

Basic way 2 (application w/o MPI_Alloc_mem) — Use proxy library to replace malloc with
MPI_Alloc_mem:

$ export I _MPI SHM HEAP=1
S export LD PRELOAD=$SI MPI ROOT/intel64/1lib/libmpi shm heap proxy.so
$ mpirun -n 36 -ppn 36 IMB-MPI1 alltoall -iter 1000,800 -time 4800

NOTE: IMB-MPI1 uses MPI_Alloc_mem for memory allocations

SHM HEAP IMPACT

IMB-MPI1 alltoall SKX n36p36 (single node). Latency ratio. Higher is better

4.5
4
3.5
3
2.5
iel
=
i , B |_MPI_SHM_HEAP=1
mOO0OB
15
1
0 Configuration:
Ge) » © v © oV 1 node
3 @ & AR
\’ ” (" \9 » “‘Q ‘b\’ \,‘3’ 0,'{/\ Q§°‘° (/99 ,‘Q\’ c;»“” Q&é’ Qo’,\\’ ,\,o,&’ Hardware: Intel® Xeon® Gold 6140 CPU @ 2.30GHz; 192 GB RAM.
v v & Intel® Turbo Boost Technology and Hyperthreading Technology
enabled.

|_MPI_FABRICS=shm, Intel® MPI Library 2019 Update 5

"7’ /// '

SHM HEAP ENVIRONMENT VARIABLES.

I_MPI_SHM_HEAP=<0|1> SHM heap control. (disabled by default)

I_MPI_SHM_HEAP_VSIZE=<size in megabytes> SHM heap virtual memory pool size per rank
(4096 MB by default)

I_MPI_SHM_HEAP_CSIZE=<size in megabytes> SHM heap cache size per rank (12.5% by
default. 266 MB — max size)

| MPI_SHM_HEAP_OPT=<rank|numa> SHM heap optimizations/policy (rank by default)

Legal Disclaimer & Optimization Notice

Performance results are based on testing as of August and September 2018 and may not reflect all publicly available security updates. See
configuration disclosure for details. No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Xeon, Core, VTune, and the Intel logo are trademarks of Intel Corporation in the
U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

/”]
'\' g o7 NS
ook b
R »
|
SR
. RN
: ;": y
/ \ . “,‘~ ' h h g
AN .
v o. >
A\ O
\ ’
AL
a
s A\

ENVIRONMENT VARIABLES. TUNING POLICY

I_MPI_TUNING_AUTO_ITER_POLICY=<0|1> Adaptive iterations number mode. (enabled by
default)

|_MPI_TUNING_AUTO_ITER_POLICY_THRESHOLD=<msg_size> Message size threshold for
I_MPI_TUNING_AUTO_ITER_POLICY. (64KB by default).

I_MPI_TUNING_AUTO_POLICY=<max|min|avg> Autotuning strategy. (Use “max” time by
default)

|_MPI_ADJUST_<opname>_LIST=<algid1>[-<algid2>][,<algid3>][,<algid4>-<algid5>] Collective
operation algorithms filter list for autotuner. (All algorithms available by default)

NOTE: I_MPI_TUNING_AUTO_ITER_POLICY_THRESHOLD halves number of iterations. E.g. If
I_MPIL_TUNING_AUTO_ITER_NUM=256, then for 512KB message size number of iterations will be 32

THREAD-SPLIT. SENDRECVMT

$ source <impi 2019 install path>/intel64/bin/mpivars.sh release mt

= 1 thread:

$ OMP_NUM THREADS=1 I MPI THREAD SPLIT=1 I MPI THREAD RUNTIME=openmp mpirun -n 2 -ppn 1 -hosts
hostl,host2 IMB-MT -thread level multiple -datatype char sendrecvmt -count 32768,524288,8388608 -
repeat 1000

= 4 threads:

$ OMP_NUM THREADS=4 I MPI THREAD SPLIT=1 I MPI THREAD RUNTIME=openmp mpirun -n 2 -ppn 1 -hosts
hostl,host2 IMB-MT -thread level multiple -datatype char sendrecvmt -count 8192,131072,2097152 -
repeat 1000

IMB-MT sendrecvmt. MBytes/sec ratio. Higher is better

Performance results are based on testing as of June 2019 and may not reflect all publicly available security
25 updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads
used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,

2 operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including
1.5 the performance of that product when combined with other products. For more complete information visit
,% ® 1 thread http://www.intel.com/benchmarks.
1 N 4 threads Configuration:
Testing by Intel as of June, 2019. 2 nodes
Hardware: Intel® Xeon® Gold 6252 CPU @ 2.10GHz; 192 GB RAM. Intel® Turbo Boost Technology and
0.5 Hyperthreading Technology enabled.
Interconnect: Intel® Omni-Path Host Fabric Interface
0 Software: RHEL* 7.6; IFS 10.9.0.0.210-957.12.2-2.10.6; Libfabric distributed with Intel® MPI 2019 Update 4; Intel®

8388608 MPI Library 2019 Update 4

™3

(l I te,' ®experience

what's inside”

