
IXPUG 2024

Modeling and Simulation of
Collective Algorithms on HPC
Network Topologies Using
Structural Simulation Toolkit

Sai P. Chenna, Michael Steyer, Nalini Kumar,
Maria Garzaran, Philippe Thierry

SC24 2

Introduction
Communication is the significant scaling
bottleneck for large-scale AI training:

▪ Larger model sizes, larger datasets => more
network traffic

▪ Growth of network BW lagging behind

Collectives – dominant comm. pattern for
Dist. Training

Various algorithms proposed to optimize
communication performance

▪ Ring, Rabenseifner, Double Binary Tree,
Topo-aware etc..

▪ Modeling these algorithms crucial for
co-design

Our proposed solution : leverage scalable
system-level simulator (SST*) for collective
modeling

▪ We leverage SST’s network modeling stack
and extend it to build models for various
collective algorithms

▪ Evaluate scaling efficiency of these
collectives on different network topologies

Evolution of peak Compute, Memory and Interconnect performance over the years
Image Courtesy: AI and Memory Wall

*Structural Simulation Toolkit (http://sst-simulator.org/)

https://arxiv.org/html/2403.14123v1
http://sst-simulator.org/

SC24 3

Structural Simulation Toolkit: Network Modeling Stack

SST

▪ Scalable, parallel DES* aimed for HW/SW co-
design

▪ Developed by Sandia National Laboratories
(http://sst-simulator.org/)

Ember

▪ Network traffic generator based on
application communication patterns

▪ Packages HPC comm patterns as motifs

▪ Provides a collection of diverse HPC comm
patterns

Firefly

▪ Interface b/w network driver (Ember) and the
router models (Merlin)

▪ Provides packetization and byte movement
engine

▪ Implementation of communication protocols

Merlin

▪ Provides low-level, flexible networking
components to simulate high-speed
networks

▪ Models flit-level movement, physical routing
and delivery of packets

▪ Supported topologies – Fat-tree, Dragonfly,
N-dimension Torus

Merlin high-level overview
Image courtesy: Sandia National Laboratories

SST Network modeling stack
Image courtesy: Sandia National Laboratories

* Discrete Event Simulator

http://sst-simulator.org/
https://www.osti.gov/servlets/purl/1513506
https://www.osti.gov/servlets/purl/1513506

SC24 4

Collectives – AllReduce & Barrier

AllReduce

▪ Perform reduction on data distributed across
processes

▪ E.g: sum model gradients across various
processes in AI training

▪ Algorithms:

▪ Binary Tree (default)

▪ Rabenseifner

▪ Ring

Barrier

▪ Synchronize across processes

▪ E.g: Init/Finalize, coordinating iterations,
collectives

▪ Algorithms:

▪ Binary Tree (default)

▪ Dissemination

AllReduce Barrier

SC24 5

AllReduce: Binary Tree

0 1 2 3

4 5 6 7

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Two-phases: Reduce & Broadcast

Binary Tree:

SC24 6

AllReduce: Binary Tree

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Two-phases: Reduce & Broadcast

▪ Step 1: Initialize the tree

Binary Tree:

0

3 4 5 6

1 2

7

SC24 7

AllReduce: Binary Tree

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Two-phases: Reduce & Broadcast

▪ Step 1: Initialize the tree

▪ Step 2: Reduce

▪ Receive data from children

▪ Perform reduction

▪ Send data to parent

Binary Tree AllReduce:

0

3 4 5 6

1 2

7

SC24 8

AllReduce: Binary Tree

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Two-phases: Reduce & Broadcast

▪ Step 1: Initialize the tree

▪ Step 2: Reduce

▪ Step 3: Broadcast

▪ Receive data from parent

▪ Send data to children

Binary Tree AllReduce:

0

3 4 5 6

1 2

7

SC24 9

AllReduce: Binary Tree

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Two-phases: Reduce & Broadcast

▪ Step 1: Initialize the tree

▪ Step 2: Reduction

▪ Step 3: Broadcast

▪ Cost model

▪ Assuming P processes, N message size

▪ Latency per message – α

▪ Transfer time per byte – β

▪ Reduction cost per byte – γ

Binary Tree AllReduce:

𝑇𝑐𝑜𝑠𝑡_𝑡𝑟𝑒𝑒_𝑟𝑒𝑑𝑢𝑐𝑒 = 𝛼 log2 𝑃 + 𝑁 log2 𝑃 𝛽 + 𝑁 log2 𝑃 𝛾

𝑇𝑐𝑜𝑠𝑡_𝑡𝑟𝑒𝑒_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 = 𝛼 log2 𝑃 + 𝑁 log2 𝑃 𝛽

𝑇𝑐𝑜𝑠𝑡_𝑡𝑟𝑒𝑒_𝑎𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒 = 2𝛼 log2 𝑃 + 2log2𝑃𝑁𝛽 + 𝑁log2𝑃𝛾

SC24 10

AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

Rabenseifner:

0 1 2 3 4 5 6 7

SC24 11

AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Log P steps

▪ Message size decreases by 2

▪ Rank distance increases by 2

Rabenseifner:

0 1 2 3 4 5 6 7

Stage 1

Message size: N/2

SC24 12

AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Log P steps

▪ Message size decreases by 2

▪ Rank distance increases by 2

Rabenseifner:

0 1 2 3 4 5 6 7

Stage 2

Message size: N/4

SC24 13

AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Log P steps

▪ Message size decreases by 2

▪ Rank distance increases by 2

Rabenseifner:

Stage 3

Message size: N/8
4 5 610 2 73

SC24 14

AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Phase 2: AllGather

▪ Log P steps

▪ Message size increases by 2

▪ Rank distance decreases by 2

Rabenseifner:

4 5 610 2 73

Stage 1

Message size: N/8

SC24 15

AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Phase 2: AllGather

▪ Log P steps

▪ Message size increases by 2

▪ Rank distance decreases by 2

Rabenseifner:

Stage 2

Message size: N/4
0 1 2 3 4 5 6 7

SC24 16

AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Phase 2: AllGather

▪ Log P steps

▪ Message size increases by 2

▪ Rank distance decreases by 2

Rabenseifner AllReduce:

Stage 3

Message size: N/2
0 1 2 3 4 5 6 7

SC24 17

AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Phase 2: AllGather

Rabenseifner :

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒓𝒆𝒅𝒖𝒄𝒆_𝒔𝒄𝒂𝒕𝒕𝒆𝒓 = 𝜶 log𝟐 𝑷 +
𝑷 − 𝟏

𝑷
𝑵𝜷 +

𝑷 − 𝟏

𝑷
𝑵𝜸

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒂𝒍𝒍𝒈𝒂𝒕𝒉𝒆𝒓 = 𝜶 log𝟐 𝑷 +
𝑷 − 𝟏

𝑷
𝑵𝜷

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒂𝒍𝒍𝒓𝒆𝒅𝒖𝒄𝒆 = 𝟐𝜶 𝒍𝒐𝒈𝟐 𝑷 + 𝟐
𝑷 − 𝟏

𝑷
𝑵𝜷 +

𝑷 − 𝟏

𝑷
𝑵𝜸

SC24 18

AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Phase 2: AllGather

▪ Two additional steps of data exchange for
non-powers of 2

Rabenseifner :

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒓𝒆𝒅𝒖𝒄𝒆_𝒔𝒄𝒂𝒕𝒕𝒆𝒓 = 𝜶 (log𝟐 𝑷 + 𝟏) + [
𝑷 − 𝟏

𝑷
+ 𝟏]𝑵𝜷 + [

𝑷 − 𝟏

𝑷
+ 𝟏]𝑵𝜸

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒂𝒍𝒍𝒈𝒂𝒕𝒉𝒆𝒓 = 𝜶 (log𝟐 𝑷 + 𝟏) + [
𝑷 − 𝟏

𝑷
+ 𝟏]𝑵𝜷

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒂𝒍𝒍𝒓𝒆𝒅𝒖𝒄𝒆 = 𝟐𝜶(𝐥𝐨𝐠𝟐𝑷 + 𝟏) + 𝟐[
𝑷 − 𝟏

𝑷
+ 𝟏]𝑵𝜷 + [

𝑷 − 𝟏

𝑷
+ 𝟏]𝑵𝜸

SC24 19

AllReduce: Ring

▪ Optimal rank proximity

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Fixed communicating pairs

▪ Rank distance 1

▪ Constant message size: N/P

Ring AllReduce:

𝑻𝒄𝒐𝒔𝒕_𝒓𝒊𝒏𝒈_𝒓𝒆𝒅𝒖𝒄𝒆_𝒔𝒄𝒂𝒕𝒕𝒆𝒓 = 𝜶(𝑷 − 𝟏) +
𝑷 − 𝟏

𝑷
𝑵𝜷 +

𝑷 − 𝟏

𝑷
𝑵𝜸

𝑻𝒄𝒐𝒔𝒕_𝒓𝒊𝒏𝒈_𝒂𝒍𝒍𝒈𝒂𝒕𝒉𝒆𝒓 = 𝜶(𝑷 − 𝟏) +
𝑷 − 𝟏

𝑷
𝑵𝜷

𝑻𝒄𝒐𝒔𝒕_𝒓𝒊𝒏𝒈_𝒂𝒍𝒍𝒓𝒆𝒅𝒖𝒄𝒆 = 𝟐𝜶(𝑷 − 𝟏) + 𝟐[
𝑷 − 𝟏

𝑷
]𝑵𝜷 + [

𝑷 − 𝟏

𝑷
]𝑵𝜸

SC24 20

Barrier: Binary Tree

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Like Tree AllReduce – but without

▪ Data transfer and reduction costs

▪ Two Phases: Arrival & Departure

▪ Arrival

▪ All processes inform the parent they
reached barrier (until root node)

▪ Departure

▪ Each process signals children to exit the
barrier state

▪ Cost model – only involves latency cost

▪ Assuming P processes, N message size

▪ Latency per message – α

Binary Tree Barrier:

𝑇𝑐𝑜𝑠𝑡_𝑡𝑟𝑒𝑒_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = 2𝛼 𝐥𝐨𝐠𝟐 𝑷

SC24 21

Barrier: Dissemination

▪ Algorithm:

▪ Decentralized approach for process
synchronization

▪ Takes log2 P steps

▪ At the end of step i

▪ Guaranteed that atleast (1+2i) processes
reach barrier

▪ Cost model – only involves latency cost

▪ Assuming P processes, N message size

▪ Latency per message – α

Dissemination Barrier:

𝑇𝑐𝑜𝑠𝑡_𝑑𝑖𝑠𝑠𝑒𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = 𝛼 𝐥𝐨𝐠𝟐 𝑷

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

𝐥𝐨𝐠𝟐𝑷
stages

SC24 22

Experimental Setup
Network configuration

Topology Fat-tree, 2D HyperX, 3D HyperX, 2D Torus, 3D Torus, Dragonfly

Endpoints 1024, 4096, 16K, 64K, 256K

Link Bandwidth 50 GB/s

Link Latency 20 ns

Router configuration

Crossbar BW 50 GB/s

Input latency 30ns

Output latency 30ns

Input buffer size 64 kB

Output buffer size 32 kB

Communication Pattern

AllReduce Binary Tree, Rabenseifner, Ring

Message Size 8kB, 32kB, 128kB, 512kB, 2MB, 8MB, 16MB, 64MB, 256MB

Barrier Binary Tree, Dissemination

SC24 23

Simulation Results: Communication Matrix
(AllReduce: P – 128 ; N – 8MB)

Binary Tree Rabenseifner Ring

▪ Naïve approach – no rank proximity

▪ Sequential pattern – longer wait
times

▪ Not much overlap b/w comm.
pairs

▪ Pairwise comm. involves full
message size

▪ Better decomposition

▪ Pairwise comm involves reduced
msg sizes at each comm stage

▪ Better overlap of comm. pairs

▪ Optimal rank proximity

▪ Fixed send/recv pairs

SC24 24

Simulation Results: Communication time (AllReduce: P – 1024)

▪ Ring AllReduce has higher latency for
smaller messages

▪ More steps – 2(P-1) vs 2𝐥𝐨𝐠2P

▪ Rabenseifner and Ring optimal for large
message sizes

▪ Better rank proximity over binary tree

▪ Ring AllReduce is optimal for
non-power of 2 processes

▪ Comm volume per rank

– 𝟐
𝑷−𝟏

𝑷
𝑵 vs 𝟐(

𝑷−𝟏

𝑷
+ 𝟏)𝑵

Three-level Fat-tree 2D HyperX

2D Torus Dragonfly

SC24 25

Simulation Results: Impact of N/W (AllReduce: P – 4096 ; N – 16MB)

Communication time Average packet latency

▪ Binary Tree AllReduce is sensitive to network topology

▪ High diameter N/Ws (2D/3D Torus) resulted in longer comm. times

▪ Rabenseifner and Ring had minimal impact w.r.t network topology

SC24 26

Simulation Results: Barrier Scalability

Communication time Dissemination Barrier – Speedup

▪ Dissemination barrier outperforms Tree barrier

▪ 2x fewer steps – 𝐥𝐨𝐠𝟐𝑷 vs 2 𝐥𝐨𝐠𝟐𝑷

SC24 27

Summary & Ongoing Work

▪ Collectives – dominant communication pattern in large-scale HPC & AI workloads

▪ Various algorithms have been proposed to optimize collective performance

▪ Modeling and simulation is crucial for identifying optimal candidates

▪ Our approach: Leverage and extend scalable system-level simulator (SST) for collective modeling

▪ We built models in SST for AllReduce (Rabenseifner, Ring) and Barrier (Dissemination) collectives

▪ Evaluated collective performance on different network topologies

▪ Ongoing work include

▪ Upstreaming these models into SST repo – pending legal approvals

▪ Build additional collective models – Double Binary Tree, Topology-aware collectives (e.g.
Hierarchical AllReduce)

▪ Validation w/ Benchmarks and analytical models

SC24 28

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at intel.com/performanceindex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly
available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Configurations:

Structural Simulation Toolkit version: 13.0.0; modified to include support for additional collectives. The modified
simulator code is not yet publicly available.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

	Slide 1: Modeling and Simulation of Collective Algorithms on HPC Network Topologies Using Structural Simulation Toolkit
	Slide 2: Introduction
	Slide 3: Structural Simulation Toolkit: Network Modeling Stack
	Slide 4: Collectives – AllReduce & Barrier
	Slide 5: AllReduce: Binary Tree
	Slide 6: AllReduce: Binary Tree
	Slide 7: AllReduce: Binary Tree
	Slide 8: AllReduce: Binary Tree
	Slide 9: AllReduce: Binary Tree
	Slide 10: AllReduce: Rabenseifner
	Slide 11: AllReduce: Rabenseifner
	Slide 12: AllReduce: Rabenseifner
	Slide 13: AllReduce: Rabenseifner
	Slide 14: AllReduce: Rabenseifner
	Slide 15: AllReduce: Rabenseifner
	Slide 16: AllReduce: Rabenseifner
	Slide 17: AllReduce: Rabenseifner
	Slide 18: AllReduce: Rabenseifner
	Slide 19: AllReduce: Ring
	Slide 20: Barrier: Binary Tree
	Slide 21: Barrier: Dissemination
	Slide 22: Experimental Setup
	Slide 23: Simulation Results: Communication Matrix (AllReduce: P – 128 ; N – 8MB)
	Slide 24: Simulation Results: Communication time (AllReduce: P – 1024)
	Slide 25: Simulation Results: Impact of N/W (AllReduce: P – 4096 ; N – 16MB)
	Slide 26: Simulation Results: Barrier Scalability
	Slide 27: Summary & Ongoing Work
	Slide 28: Notices & Disclaimers
	Slide 29

