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Introduction
Communication is  the significant scaling 
bottleneck for large-scale AI training:

▪ Larger model sizes, larger datasets => more 
network traffic

▪ Growth of network BW lagging behind

Collectives – dominant comm. pattern for 
Dist. Training

Various algorithms proposed to optimize 
communication performance

▪ Ring, Rabenseifner, Double Binary Tree, 
Topo-aware etc..

▪ Modeling these algorithms crucial for 
co-design

Our proposed solution : leverage scalable 
system-level simulator (SST*) for collective 
modeling

▪ We leverage SST’s network modeling stack 
and extend it to build models for various 
collective algorithms

▪ Evaluate scaling efficiency of these 
collectives on different network topologies

Evolution of peak Compute, Memory and Interconnect performance over the years
Image Courtesy: AI and Memory Wall

*Structural Simulation Toolkit (http://sst-simulator.org/ )

https://arxiv.org/html/2403.14123v1
http://sst-simulator.org/
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Structural Simulation Toolkit: Network Modeling Stack

SST

▪ Scalable, parallel DES* aimed for HW/SW co-
design

▪ Developed by Sandia National Laboratories 
(http://sst-simulator.org/ )

Ember

▪ Network traffic generator based on 
application communication patterns

▪ Packages HPC comm patterns as motifs

▪ Provides a collection of diverse HPC comm 
patterns

Firefly

▪ Interface b/w network driver (Ember) and the 
router models (Merlin)

▪ Provides packetization and byte movement 
engine

▪ Implementation of communication protocols

Merlin

▪ Provides low-level, flexible networking 
components to simulate high-speed 
networks 

▪ Models flit-level movement, physical routing 
and delivery of packets

▪ Supported topologies – Fat-tree, Dragonfly, 
N-dimension Torus

Merlin high-level overview
Image courtesy: Sandia National Laboratories 

SST Network modeling stack
Image courtesy: Sandia National Laboratories

* Discrete Event Simulator

http://sst-simulator.org/
https://www.osti.gov/servlets/purl/1513506
https://www.osti.gov/servlets/purl/1513506
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Collectives – AllReduce & Barrier

AllReduce

▪ Perform reduction on data distributed across 
processes

▪ E.g: sum model gradients across various 
processes in AI training

▪ Algorithms:

▪ Binary Tree (default)

▪ Rabenseifner

▪ Ring

Barrier

▪ Synchronize across processes

▪ E.g: Init/Finalize, coordinating iterations, 
collectives

▪ Algorithms:

▪ Binary Tree (default)

▪ Dissemination

AllReduce Barrier
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AllReduce: Binary Tree

0 1 2 3

4 5 6 7

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Two-phases: Reduce & Broadcast

Binary Tree:
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AllReduce: Binary Tree

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Two-phases: Reduce & Broadcast

▪ Step 1: Initialize the tree

Binary Tree:

0

3 4 5 6

1 2

7
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AllReduce: Binary Tree

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Two-phases: Reduce & Broadcast

▪ Step 1: Initialize the tree

▪ Step 2: Reduce

▪ Receive data from children

▪ Perform reduction

▪ Send data to parent

Binary Tree AllReduce:

0

3 4 5 6

1 2

7
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AllReduce: Binary Tree

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Two-phases: Reduce & Broadcast

▪ Step 1: Initialize the tree

▪ Step 2: Reduce

▪ Step 3: Broadcast

▪ Receive data from parent

▪ Send data to children

Binary Tree AllReduce:

0

3 4 5 6

1 2

7
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AllReduce: Binary Tree

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Two-phases: Reduce & Broadcast

▪ Step 1: Initialize the tree

▪ Step 2: Reduction

▪ Step 3: Broadcast

▪ Cost model

▪ Assuming P processes, N message size

▪ Latency per message – α

▪ Transfer time per byte – β

▪ Reduction cost per byte – γ

Binary Tree AllReduce:

𝑇𝑐𝑜𝑠𝑡_𝑡𝑟𝑒𝑒_𝑟𝑒𝑑𝑢𝑐𝑒 = 𝛼 log2 𝑃 + 𝑁 log2 𝑃 𝛽 + 𝑁 log2 𝑃 𝛾

𝑇𝑐𝑜𝑠𝑡_𝑡𝑟𝑒𝑒_𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 = 𝛼 log2 𝑃 + 𝑁 log2 𝑃 𝛽

𝑇𝑐𝑜𝑠𝑡_𝑡𝑟𝑒𝑒_𝑎𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒 = 2𝛼 log2 𝑃 + 2log2𝑃𝑁𝛽 + 𝑁log2𝑃𝛾
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AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

Rabenseifner:

0 1 2 3 4 5 6 7
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AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Log P steps

▪ Message size decreases by 2

▪ Rank distance increases by 2

Rabenseifner:

0 1 2 3 4 5 6 7

Stage 1

Message size: N/2
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AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Log P steps

▪ Message size decreases by 2

▪ Rank distance increases by 2

Rabenseifner:

0 1 2 3 4 5 6 7

Stage 2

Message size: N/4
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AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Log P steps

▪ Message size decreases by 2

▪ Rank distance increases by 2

Rabenseifner:

Stage 3

Message size: N/8
4 5 610 2 73
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AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Phase 2: AllGather

▪ Log P steps

▪ Message size increases by 2

▪ Rank distance decreases by 2

Rabenseifner:

4 5 610 2 73

Stage 1

Message size: N/8
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AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Phase 2: AllGather

▪ Log P steps

▪ Message size increases by 2

▪ Rank distance decreases by 2

Rabenseifner:

Stage 2

Message size: N/4
0 1 2 3 4 5 6 7
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AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Phase 2: AllGather

▪ Log P steps

▪ Message size increases by 2

▪ Rank distance decreases by 2

Rabenseifner AllReduce:

Stage 3

Message size: N/2
0 1 2 3 4 5 6 7
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AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Phase 2: AllGather

Rabenseifner :

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒓𝒆𝒅𝒖𝒄𝒆_𝒔𝒄𝒂𝒕𝒕𝒆𝒓 = 𝜶 log𝟐 𝑷 +
𝑷 − 𝟏

𝑷
𝑵𝜷 +

𝑷 − 𝟏

𝑷
𝑵𝜸

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒂𝒍𝒍𝒈𝒂𝒕𝒉𝒆𝒓 = 𝜶 log𝟐 𝑷 +
𝑷 − 𝟏

𝑷
𝑵𝜷

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒂𝒍𝒍𝒓𝒆𝒅𝒖𝒄𝒆 = 𝟐𝜶 𝒍𝒐𝒈𝟐 𝑷 + 𝟐
𝑷 − 𝟏

𝑷
𝑵𝜷 +

𝑷 − 𝟏

𝑷
𝑵𝜸
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AllReduce: Rabenseifner

▪ Provides better rank proximity over binary tree

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Phase 1: Reduce-Scatter

▪ Phase 2: AllGather

▪ Two additional steps of data exchange for 
non-powers of 2

Rabenseifner :

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒓𝒆𝒅𝒖𝒄𝒆_𝒔𝒄𝒂𝒕𝒕𝒆𝒓 = 𝜶 (log𝟐 𝑷 + 𝟏) + [
𝑷 − 𝟏

𝑷
+ 𝟏]𝑵𝜷 + [

𝑷 − 𝟏

𝑷
+ 𝟏]𝑵𝜸

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒂𝒍𝒍𝒈𝒂𝒕𝒉𝒆𝒓 = 𝜶 (log𝟐 𝑷 + 𝟏) + [
𝑷 − 𝟏

𝑷
+ 𝟏]𝑵𝜷

𝑻𝒄𝒐𝒔𝒕_𝒓𝒂𝒃𝒆𝒏𝒔𝒆𝒊𝒇𝒏𝒆𝒓_𝒂𝒍𝒍𝒓𝒆𝒅𝒖𝒄𝒆 = 𝟐𝜶(𝐥𝐨𝐠𝟐𝑷 + 𝟏) + 𝟐[
𝑷 − 𝟏

𝑷
+ 𝟏]𝑵𝜷 + [

𝑷 − 𝟏

𝑷
+ 𝟏]𝑵𝜸
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AllReduce: Ring

▪ Optimal rank proximity

▪ Algorithm:

▪ Two phases: Reduce-Scatter & AllGather

▪ Fixed communicating pairs

▪ Rank distance 1

▪ Constant message size: N/P

Ring AllReduce:

𝑻𝒄𝒐𝒔𝒕_𝒓𝒊𝒏𝒈_𝒓𝒆𝒅𝒖𝒄𝒆_𝒔𝒄𝒂𝒕𝒕𝒆𝒓 = 𝜶(𝑷 − 𝟏) +
𝑷 − 𝟏

𝑷
𝑵𝜷 +

𝑷 − 𝟏

𝑷
𝑵𝜸

𝑻𝒄𝒐𝒔𝒕_𝒓𝒊𝒏𝒈_𝒂𝒍𝒍𝒈𝒂𝒕𝒉𝒆𝒓 = 𝜶(𝑷 − 𝟏) +
𝑷 − 𝟏

𝑷
𝑵𝜷

𝑻𝒄𝒐𝒔𝒕_𝒓𝒊𝒏𝒈_𝒂𝒍𝒍𝒓𝒆𝒅𝒖𝒄𝒆 = 𝟐𝜶(𝑷 − 𝟏) + 𝟐[
𝑷 − 𝟏

𝑷
]𝑵𝜷 + [

𝑷 − 𝟏

𝑷
]𝑵𝜸
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Barrier: Binary Tree

▪ Default implementation in SST (Firefly)

▪ Algorithm:

▪ Like Tree AllReduce – but without

▪ Data transfer and reduction costs

▪ Two Phases: Arrival & Departure

▪ Arrival

▪ All processes inform the parent they 
reached barrier (until root node)

▪ Departure

▪ Each process signals children to exit the 
barrier state

▪ Cost model – only involves latency cost

▪ Assuming P processes, N message size

▪ Latency per message – α

Binary Tree Barrier:

𝑇𝑐𝑜𝑠𝑡_𝑡𝑟𝑒𝑒_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = 2𝛼 𝐥𝐨𝐠𝟐 𝑷
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Barrier: Dissemination

▪ Algorithm:

▪ Decentralized approach for process 
synchronization

▪ Takes log2 P steps

▪ At the end of step i

▪ Guaranteed that atleast (1+2i ) processes 
reach barrier

▪ Cost model – only involves latency cost

▪ Assuming P processes, N message size

▪ Latency per message – α

Dissemination Barrier:

𝑇𝑐𝑜𝑠𝑡_𝑑𝑖𝑠𝑠𝑒𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = 𝛼 𝐥𝐨𝐠𝟐 𝑷

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

𝐥𝐨𝐠𝟐𝑷
stages
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Experimental Setup
Network configuration

Topology Fat-tree, 2D HyperX, 3D HyperX, 2D Torus, 3D Torus, Dragonfly

Endpoints 1024, 4096, 16K, 64K, 256K

Link Bandwidth 50 GB/s

Link Latency 20 ns

Router configuration

Crossbar BW 50 GB/s

Input latency 30ns

Output latency 30ns

Input buffer size 64 kB

Output buffer size 32 kB

Communication Pattern

AllReduce Binary Tree, Rabenseifner, Ring

Message Size 8kB, 32kB, 128kB, 512kB, 2MB, 8MB, 16MB, 64MB, 256MB

Barrier Binary Tree, Dissemination
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Simulation Results: Communication Matrix 
(AllReduce: P – 128 ; N – 8MB)

Binary Tree Rabenseifner Ring

▪ Naïve approach – no rank proximity

▪ Sequential pattern – longer wait 
times

▪ Not much overlap b/w comm. 
pairs

▪ Pairwise comm. involves full 
message size

▪ Better decomposition

▪ Pairwise comm involves reduced 
msg sizes at each comm stage

▪ Better overlap of comm. pairs

▪ Optimal rank proximity

▪ Fixed send/recv pairs
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Simulation Results: Communication time (AllReduce: P – 1024 )

▪ Ring AllReduce has higher latency for 
smaller messages

▪ More steps – 2(P-1) vs 2𝐥𝐨𝐠2P 

▪ Rabenseifner and Ring optimal for large 
message sizes

▪ Better rank proximity over binary tree

▪ Ring AllReduce is optimal for 
non-power of 2 processes

▪ Comm volume per rank 

– 𝟐
𝑷−𝟏

𝑷
𝑵 vs 𝟐(

𝑷−𝟏

𝑷
+ 𝟏)𝑵

Three-level Fat-tree 2D HyperX

2D Torus Dragonfly
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Simulation Results: Impact of N/W  (AllReduce: P – 4096 ; N – 16MB)

Communication time Average packet latency

▪ Binary Tree AllReduce is sensitive to network topology

▪ High diameter N/Ws (2D/3D Torus) resulted in longer comm. times

▪ Rabenseifner and Ring had minimal impact w.r.t network topology
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Simulation Results: Barrier Scalability

Communication time Dissemination Barrier – Speedup 

▪ Dissemination barrier outperforms Tree barrier

▪ 2x fewer steps – 𝐥𝐨𝐠𝟐𝑷 vs 2 𝐥𝐨𝐠𝟐𝑷
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Summary & Ongoing Work

▪ Collectives – dominant communication pattern in large-scale HPC & AI workloads

▪ Various algorithms have been proposed to optimize collective performance

▪ Modeling and simulation is crucial for identifying optimal candidates

▪ Our approach: Leverage and extend scalable system-level simulator (SST) for collective modeling

▪ We built models in SST for AllReduce (Rabenseifner, Ring) and Barrier (Dissemination) collectives

▪ Evaluated collective performance on different network topologies

▪ Ongoing work include

▪ Upstreaming these models into SST repo – pending legal approvals

▪ Build additional collective models – Double Binary Tree, Topology-aware collectives (e.g. 
Hierarchical AllReduce)

▪ Validation w/ Benchmarks and analytical models
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Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at intel.com/performanceindex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly 
available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Configurations:

Structural Simulation Toolkit version: 13.0.0; modified to include support for additional collectives. The modified 
simulator code is not yet publicly available.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its 
subsidiaries. Other names and brands may be claimed as the property of others.
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