
Mixed-Language Programming
with Fortran and Data Parallel
C++

Christoph Bauinger (Technical Consulting Engineer Intern)

James Tullos (Technical Consulting Engineer)

2

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/articles/optimization-notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. See backup for configuration details. For more complete information about performance and
benchmark results, visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No
product or component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement,
as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property
of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

3

Goals

▪Offload computationally intensive tasks in existing Fortran code

using DPC++

▪Use as much of the existing Fortran code as possible and use DPC++

only for offload

▪Minimize changes to the code

▪ Establish BKMs, patterns and designs useful for DPC++ code

migration

▪Quantify and compare performance (DPC++, OMP)

4

Code Analysis – The Driver

Driver – in Fortran

Bottleneck → Offload

Kernel Parameters: 2- and 3-
dimensional arrays

5

Code Analysis – Kernel c_sw

▪ Kernel consists of function calls
and nested loops

▪ ~800 lines of c_sw kernel
Fortran code

Piece of the kernel code

6

Code Flow Chart

Serial

Driver c_sw
calls

Loops for k = 1, … , npz

Loop1 Loop2 Loop3

7

Code Flow Chart

OMP parallel

Driver

c_sw, k=1

c_sw, k=2

c_sw, k=npz-1

c_sw, k=npz

c_sw, k=…

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

8

Possible Offload - Approach ‘Loop’

OMP parallel
Driver

c_sw, k=1

c_sw, k=npz

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Fortran DPC++ Host DPC++ Device/Host

9

Possible Offload - Approach ‘Outer’

Driver

c_sw, k=1

c_sw, k=2

c_sw, k=npz-1

c_sw, k=npz

c_sw, k=…

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

Loop1 Loop2 Loop3

c_sw_dpcpp

Fortran DPC++ Host DPC++ Device

10

Design Challenges
▪Non-zero start of Fortran arrays

▪Non-zero start of loops

▪ Fortran column-major vs C++ row-
major

▪Access operator in Fortran differs from
C++

▪No memory allocations in device code

▪Many arrays as parameters

▪ Solution: Two step migration to C++
and then DPC++, use Approach ‘Outer’

11

Design Challenges
▪Non-zero start of Fortran arrays

▪Non-zero start of loops

▪ Fortran column-major vs C++ row-
major

▪Access operator in Fortran differs from
C++

▪No memory allocations in device code

▪Many arrays as parameters

▪ Solution: Two step migration to C++
and then DPC++, use Approach ‘Outer’

c_sw code

12

Design Challenges
▪Non-zero start of Fortran arrays

▪Non-zero start of loops

▪ Fortran column-major vs C++ row-
major

▪Access operator in Fortran differs from
C++

▪No memory allocations in device code

▪Many arrays as parameters

▪ Solution: Two step migration to C++
and then DPC++, use Approach ‘Outer’

13

Design Challenges
▪Non-zero start of Fortran arrays

▪Non-zero start of loops

▪ Fortran column-major vs C++ row-
major

▪Access operator in Fortran differs from
C++

▪No memory allocations in device code

▪Many arrays as parameters

▪ Solution: Two step migration to C++
and then DPC++, use Approach ‘Outer’

14

Design Challenges
▪Non-zero start of Fortran arrays

▪Non-zero start of loops

▪ Fortran column-major vs C++ row-
major

▪Access operator in Fortran differs from
C++

▪No memory allocations in device code

▪Many arrays as parameters

▪ Solution: Two step migration to C++
and then DPC++, use Approach ‘Outer’

15

Design Challenges
▪Non-zero start of Fortran arrays

▪Non-zero start of loops

▪ Fortran column-major vs C++ row-
major

▪Access operator in Fortran differs from
C++

▪No memory allocations in device code

▪Many arrays as parameters

▪ Solution: Two step migration to C++
and then DPC++, use Approach ‘Outer’

16

Design Challenges
▪Non-zero start of Fortran arrays

▪Non-zero start of loops

▪ Fortran column-major vs C++ row-
major

▪Access operator in Fortran differs from
C++

▪No memory allocations in device code

▪Many arrays as parameters

▪ Solution: Two step migration to C++
and then DPC++, use Approach ‘Outer’

Fortran

C++

DPC++

17

Challenges Fortran - C++

▪Main Issue: Array Indexing

• Unit stride is inner index in Fortran vs outer in C++

• Non-zero indexing in Fortran possible (and used in code)

▪ Solution: Class OffsetArray (1D, 2D, 3D) wrapping
dynamic array emulating Fortran style arrays (see
Figure)

18

Fortran - C++ Code Comparison

Fortran C++

19

Challenges C++ - DPC++

▪Main Issues:

• OffsetArray class cannot be used in device code (as it is)

• DPC++ parallel_for indices start at 0 (‘loop indexing starting at 0’)

▪ Solutions:

• Naively: Simple offsets based on loop and array start index

• Better: Adjusting the OffsetArray class and use Approach ‘Outer’

20

C++ - DPC++ Code Comparison: Naively

C++ DPC++

Offsets due to array and loop

For loop range

DPC++ Accessors

21

C++ - DPC++ Code Comparison: Naively

▪ Tedious migration

▪Hard-to-read code

▪Need to rewrite everything
carefully

▪Debugging is a horror

▪ Focus on Approach ‘Outer’

22

Adjusting OffsetArray

▪Challenges when implicitly copying
objects from host to device

• Trivial destructor required

• Const access operator necessary (copy to
device is by const value)

• No memory allocations in device code
possible; Host needs to handle memory

23

Adjusting OffsetArray

▪Challenges when implicitly copying
objects from host to device

• Trivial destructor required

• Const access operator necessary (copy to
device is by const value)

• No memory allocations in device code
possible; Host needs to handle memory

24

Adjusting the OffsetArray Class for Approach 2

▪Challenges when implicitly copying
objects from host to device

• Trivial destructor required

• Const access operator necessary (copy to
device is by const value)

• No memory allocations in device code
possible; Host needs to handle memory

25

Usage of the OffsetArray

▪Allocate device memory explicitly

▪Construct OffsetArray with it

▪Copy memory back to host after device
code execution

▪ Free device memory explicitly after
device code execution

▪Minimize allocations and copies between
host and device

▪OffsetArray can be used on host and
device

26

Variations of the OffsetArray

▪Can use accessors to buffers instead of
USM (T * const)

▪ Shared memory (malloc_shared) is also a
possibility → can be used on host and
device with implicit copying → would
work well for Approach ‘Loop’

▪A possible extension would be a factory
pattern for the generation of the
OffsetArray

27

Putting Everything Together

Fortran Driver DPC++ Device Code = C++ Code

28

Fortran Driver DPC++ Device Code

New DPC++ c_sw_dpcpp

29

Compilation

▪ export FC=ifx

▪ export CXX=dpcpp

▪ Link for_main.o

▪Use linker flag –lifcore

▪Use dpcpp for linking
CMakeLists.txt

src/CMakeLists.txt

30

Compilation

▪ export FC=ifx

▪ export CXX=dpcpp

▪ Link for_main.o

▪Use linker flag –lifcore

▪Use dpcpp for linking
CMakeLists.txt

src/CMakeLists.txt

31

Compilation

▪ export FC=ifx

▪ export CXX=dpcpp

▪ Link for_main.o

▪Use linker flag –lifcore

▪Use dpcpp for linking

src/CMakeLists.txt

CMakeLists.txt

32

Compilation

▪ export FC=ifx

▪ export CXX=dpcpp

▪ Link for_main.o

▪Use linker flag –lifcore

▪Use dpcpp for linking

src/CMakeLists.txt

CMakeLists.txt

33

OMP Offload – Approach ‘Loop’

Fortran OMP Offload DPC++ Offload

34

OMP Offload – Approach ‘Outer’

Fortran OMP Offload DPC++ Offload

35

Performance Comparison

▪ Test performed on Intel® DevCloud

▪ Running on a small test

▪ Timings exclude memory movement and show pure kernel time

▪DPC++ is much slower than Fortran. Why? → ‘just in time’
compilation

Testcase
No Offload (+OMP) Approach ‘Outer’ Approach ‘Loop’

Fortran C++ OMP DPC++ GPU DPC++ CPU OMP DPC++ GPU DPC++ CPU

Default 0.003 s 0.005 s 7.95 s 1.094 s 2.378 s 4.32 s 3.175 s 0.225 s

Testing Date: Performance results are based on testing by Intel as of June 17, 2021 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: Intel® Xeon® E-2176G Processor with Intel® UHD Graphics P630 on Intel® DevCloud. Ubuntu 20.04.2 LTS, Intel® oneAPI Base Toolkit 2021.2, Intel® oneAPI HPC Toolkit 2021.2. SENA c_sw kernel at

https://github.com/NOAA-GSL/SENA-c_sw.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex. Your costs and results may vary.

https://github.com/NOAA-GSL/SENA-c_sw
http://www.intel.com/PerformanceIndex

36

Ahead of time compilation

▪Device kernel code is compiled
‘just in time’ (JIT) at runtime

▪A lot of device code → Takes a
lot of time

▪ If hardware is known a priori:
Pre-compile (ahead of time,
AOT) device code

▪Negligible for kernels that are
called multiple times, or longer
running kernels

src/CMakeLists.txt

CMakeLists.txt

37

Performance Comparison

▪Gains from AOT more prominent if there is more device code

▪DPC++ outperforms OMP

▪Offload still slower due to low GPU usage and the device used

▪ *Known issue with AOT, OMP offload and Gen9 graphics

Testcase
No Offload (+OMP) Approach ‘Outer’ Approach ‘Loop’

Fortran C++ OMP* DPC++ GPU DPC++ CPU OMP* DPC++ GPU DPC++ CPU

Default 0.003 s 0.005 s 7.95 s 1.094 s 2.378 s 4.32 s 3.175 s 0.225 s

AOT 0.003 s 0.005 s 7.95 s 0.094 s 0.042 s 4.32 s 3.049 s 0.079 s

Testing Date: Performance results are based on testing by Intel as of June 17, 2021 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: Intel® Xeon® E-2176G Processor with Intel® UHD Graphics P630 on Intel® DevCloud. Ubuntu 20.04.2 LTS, Intel® oneAPI Base Toolkit 2021.2, Intel® oneAPI HPC Toolkit 2021.2. SENA c_sw kernel at

https://github.com/NOAA-GSL/SENA-c_sw.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex. Your costs and results may vary.

https://github.com/NOAA-GSL/SENA-c_sw
http://www.intel.com/PerformanceIndex

38

Performance Comparison

▪ ‘Large Case’ test is ~330 times the size of ‘Default’ test

▪AOT is also used in these tests (except OMP)

Testcase
No Offload (+OMP) Approach ‘Outer’ Approach ‘Loop’

Fortran C++ OMP DPC++ GPU DPC++ CPU OMP DPC++ GPU DPC++ CPU

Default 0.003 s 0.005 s 7.95 s 1.094 s 2.378 s 4.32 s 3.175 s 0.225 s

AOT 0.003 s 0.005 s 7.95 s 0.094 s 0.042 s 4.32 s 3.049 s 0.079 s

Large Case 4.239 s 3.95 s 11.66 s 16.33 s 3.94 s 60 s 7.73 s 9.29 s

Testing Date: Performance results are based on testing by Intel as of June 17, 2021 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: Intel® Xeon® E-2176G Processor with Intel® UHD Graphics P630 on Intel® DevCloud. Ubuntu 20.04.2 LTS, Intel® oneAPI Base Toolkit 2021.2, Intel® oneAPI HPC Toolkit 2021.2. SENA c_sw kernel at

https://github.com/NOAA-GSL/SENA-c_sw.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex. Your costs and results may vary.

https://github.com/NOAA-GSL/SENA-c_sw
http://www.intel.com/PerformanceIndex

39

Summary

▪ Fortran – DPC++ migration possible and feasible

▪ Still requires Fortran – C++ migration for kernel code

▪ Leveraging C++ in kernel code and implicit data movement between
host and device allows neat code and easy migration

▪ Performance in such a first approach might not be ideal

▪One of the core strengths of DPC++ is C++

40

Acknowledgement

The NOAA HPCC Software Engineering for Novel Architectures (SENA)
program and the participating organizations: the Geophysical Fluid
Dynamics Laboratory, the Global Systems Laboratory and the
Environmental Modeling Center.

41

Resources

▪NOAA c_sw kernel - https://github.com/NOAA-GSL/SENA-c_sw

▪ Intel® oneAPI – https://software.intel.com/oneapi

▪ Intel® DevCloud for oneAPI – https://devcloud.intel.com/oneapi

https://github.com/NOAA-GSL/SENA-c_sw
https://software.intel.com/oneapi
https://devcloud.intel.com/oneapi

42

