® codeplay’

The landscape of Parallel Programming Models
Part 1: Performance, Portability & Productivity

Michael Wong

Codeplay Software Ltd.
Distinguished Engineer

IXPUG 2020

Products

““Acoran

Integrates all the industry
standard technologies needed
to supportavery wide range
of Al and HPC

A ComputeAorta

The heart of Codeplay's
compute technology enabling
OpenCL™, SPIR-V™, HSA™ and
Vulkan™

Company

Leaders in enabling high-performance
software solutions for new Al processing

systems

Enabling the toughest processors with tools
and middleware based on open standards

C ComputeCpp

C++ platform via the SYCL™
open standard, enabling vision
& machine learning e.g.
TensorFlow™

k

4

Enabling Al & HPC "/
to be Open, Safe &
Accessible to All

® codeplay’

Established 2002 in Scotland with ~80

employees

® codeplay’

Markets

High Performance Compute (HPC)
Automotive ADAS, loT, Cloud Compute
Smartphones & Tablets

Medical & Industrial

Technologies: Artificial Intelligence
Vision Processing
Machine Learning
Big Data Compute

Customers

arm sebew CEVA

Q7 imagination (i@ RENESAS

SYNnoprsys And many more!

© 2020 Codeplay Software Ltd.

Distinguished Engineer Michael Wong

° Chair of SYCL Heterogeneous Programming Language
C++ Directions Group

ISOCPP.org Director, VP
http://isocpp.org/wiki/fag/wg21#michael-wong
michael@codeplay.com

fraggamuffin@gmail.com

Head of Delegation for C++ Standard for Canada

Ported

TensorFlow to BuildLLy

Chair of Programming Languages for Standards open based

standards

Council of Canada compilers for

Chair of WG21 SG19 Machine Learning using SYC accelerators

Chair of WG21 SG14 Games Dev/Low
Latency/Financial Trading/Embedded ing

° Editor: C++ SG5 Transactional Memory Technical source, open-
Specification standard§ based Al

° Editor: C++ SG1 Concurrency Technical Specification sif;ief&_ﬁ,'°§‘vé‘i°,'jL

° MISRA C++ and AUTOSAR VisionCpp

° Chair of Standards Council Canada TC22/SC32
Electrical and electronic components (SOTIF)

° Chair of UL4600 Object Tracking

° http://wongmichael.com/about

° C++11 book in Chinese:
https://www.amazon.cn/dp/BOOETOV20Q

We build GPU compilers for semiconductor companies
Now working to make Al/ML heterogeneous acceleration safe for
autonomous vehicle

® codeplay’ © 2020 Codeplay Software Ltd.

http://isocpp.org/wiki/faq/wg21
mailto:michael@codeplay.com
mailto:fraggamuffin@gmail.com
http://wongmichael.com/about

n:
O:
>
0
(a4

- -
e

Acknowledgement and Disclaimer

THIS WORK REPRESENTS THE
VIEW OF THE AUTHOR AND DOES
NOT NECESSARILY REPRESENT
THE VIEW OF CODEPLAY.

® codeplay’

OTHER COMPANY, PRODUCT, AND
SERVICE NAMES MAY BE
TRADEMARKS OR SERVICE MARKS
OF OTHERS.

Numerous people internal and external
to the original C++/Khronos
group/OpenMP, in industry and
academia, have made contributions,
influenced ideas, written part of this
presentations, and offered feedbacks to
form part of this talk. These in clude
Bjarne Stroustrup, Joe Hummel, Botond
Ballo, Simon Mcintosh-Smith, as well as
many others.

But | claim all credit for errors, and stupid mistakes. These
are mine, all mine! You can’t have them.

© 2020 Codeplay Software Ltd.

Legal Disclaimer

THIS WORK REPRESENTS THE VIEW OF THE OTHER COMPANY, PRODUCT, AND SERVICE
AUTHOR AND DOES NOT NECESSARILY NAMES MAY BE TRADEMARKS OR SERVICE
REPRESENT THE VIEW OF CODEPLAY. MARKS OF OTHERS.

® codeplay’ © 2020 Codeplay Software Ltd.

Disclaimers

NVIDIA, the NVIDIA logo and CUDA are trademarks and/or
registered trademarks of NVIDIA Corporation in the U.S.
and/or other countries

Codeplay is not associated with NVIDIA for this work and it is
purely using public documentation and widely available code

® codeplay” © 2020 Codeplay Software Ltd.

3 Act Play

1. Performance, Portability,
Productivity

2. The four horsemen of
heterogeneous
programming

3. C++, OpenCL, OpenMP,
SYCL

® codeplay’

Act 1

Performance, Portability, Productivity

Isn’t Parallel/Concurrent/Heterogeneous
Programming Hard?

Houston, we have a software crisis!

® codeplay” © 2020 Codeplay Software Ltd.

So What are the Goals?

Goals of Parallel Programming over and above
sequential programming
1. Performance
2. Productivity
3. Portability

Portability

Performance

i | . Productivit
The Iron Triangle of Parallel Programming language nirvana rocuctvity

® codeplay” © 2020 Codeplay Software Ltd.

Why does productivity make the list?

® codeplay” © 2020 Codeplay Software Ltd.

Performance

* Broadly includes scalability and efficiency

* |f not for performance why not just write
sequential program?

e parallel programming is primarily a performance
optimization, and, as such, it is one potential

optimization of many.

[

3

=

o

O
® codeplay” 17

Are there no cases where parallel programming is
about something other than performance?

AUTOSAR ’ﬁ 2
A X

L]
!

® codeplay’ © 2020 Codeplay Software Ltd.

Productivity

Perhaps at one time, the sole purpose of parallel
software was performance. Now, however,
productivity is gaining the spotlight.

100000 £ — T #]
10000 & 1
- e

1000 = fﬁﬁ!
= e
+

1B
¥ \%‘:‘53)) W'?V‘y
1 ' A
= 0
o
sy ¥ . =
B |
i
|
f
i

® codeplay’

Given how cheap parallel systems have become,
how can anyone afford to pay people to program
them?

® codeplay’ R >ftware Ltd.

Iron Triangle of Parallel Programming Language Nirvana

Portability

Performance

Productivity

® codeplay” © 2020 Codeplay Software Ltd.

Performance Portability Productivity

Productivity

OpenCL Application
OpenMP g | Middleware (e.g., DBMS) |3
CUDA © System Libraries §
S | Operating System Kernel E

>YCL o Firmware

Hardware

Iron Triangle of Parallel Programming Nirvana is about making engineering tradeoffs

® codeplay”

© 2020 Codeplay Software Ltd.

Concurrency vs Parallelism

What makes parallel or concurrent programming harder
than serial programming? What’s the difference? How

® codeplay’ © 2020 Codeplay Software Ltd.

PPL

Which one to choose? e
OpenACC. 1

DIRECTIVES FOR ACCELERATORS

Threading
Building Blocks

® codeplay’ © 2020 Codeplay Software Ltd.

OH, East is East, and West is West,
and never the twain shall meet...
-Rudyard Kipling

Heterogeneous Devices

Accelerator

(intel

Xeon Phi™

Processo,

—

® codeplay’ © 2020 Codeplay Software Ltd.

Hardware resources view

£ XILINK,

Hot Chips

Kilinu Al Engines and Their Applications

Arm’s ML processor: Summary

16 Compute Engines

~ 4 TOP/s of convolution throughput (at
1 GHz)

Targeting > 3 TOP/W in 7nm and
~2.5mm?

8-bit quantized integer support

1MB of SRAM

‘roid NNAPI and

018

Line Buffer 0
1
Line Buffer 1
—]
R
Line Buffer N
| —]
‘ﬂk To DRAM w

Pure distributed machine with compiled communica

® codeplay’

Scalar [}¥]
Engines {GT, AMS)
Appilcation

rOCEEE0T

Foundational
Engines

1400

High Speed >40GB/s of 10 Bandwidth
Designed for Safety & Resiliency : 15026262; ASIL-C

Enhanced Security

Optimized for Energy Efficiency; TSMC 12FFN

22

Processing Eloment (PE)

Machine Learning Processor

Broadcast

MAC Engine

M Programmable Layer Engine

Compute Machine (8 - 64 clusters and 128 - 102
24 Compute Machines

0 Codeplay Software Ltd.

Fundamental Parallel Architecture Types

® Uniprocessor ® Shared Memory
* Scalar processor Multiprocessor (SMP)
® Shared memory address
processor Space
| ® Bus-based memory system
memory
 Single Instruction
Multiple Data (SIMD) b |
memory

processor

® Interconnection network

memory

® Single Instruction s
Multiple Thread (SIMT) | |
EEEEEE

|:|llllll memory
EEEEEE
EEEEEDE
EEEEEE

® codeplay” © 2020 Codeplay Software Ltd.

SIMD vs SIMT

af1]2]3T4 11 [2] [3] [4
+ + + + +
bi{5{6§71}8) §) / 8
C
_mi28a=_mm_set ps (4, 3, 2, 1); float a[4] = {1, 2, 3, 4},
__mi128b=_mm_set ps (8, 7, 6, 5); b[4] = {5, 6, 7, 8}, C[4];
__m128 ¢ =_mm_add_ps (3, b);
{
intid=...; // mythread ID
clid] = a[id] + b[id];

}

® codeplay’ © 2020 Codeplay Software Ltd.

Distributed and network Parallel Architecture Types

® Distributed Memory ¢ Cluster of SMPs
Multiprocessor Shared memory
° Message passing ad((jjressmg within SMP
node
between nodes ® Message passing between
memory memory SMP nOdeS

| irocessor ‘ processor
’7 interconnection network

ﬂ ﬂ
network

interface

interconnection network

1]
| | nn nn
memory memory
M M

® Massively Parallel Processor
(MPP) .
¢ Many, many processors

Can also be regarded as
MPP if processor number

© 2020 Codeplay Software Ltd.

Modern Parallel Architecture

([.
7 Multicore Manycore Heterogeneous. CPU+Manycore CPU

O Manycore vs Multicore CPU
cores can be
hardware network

multithreaded interface
(hyperthread) interconnection network

memory
‘ o Heterogeneous: CPU + GPU
" Vi

memory EEEEEN
EEEEEN
SEEEEEm Heterogeneous: Multicore SMP+GPU Cluster
PCI EEEEEE
EEEEEE M M

memory

O Heterogeneous: “Fused” CPU + GPU

Hn |

memory

® codeplay’ “ “’O Codeplay Software Ltd.

Modern Parallel Programmlng model

Heterogeneous: CPU+Manycore CPU: OpenCL, OpenMP, SYCL,
3 Multicore Manycore C++11{14/17/20_TBB, Cilk_nthread
M

o Manycore vs Multicore CPU: OpenCL, OpenMP, SYCL,

C++11/14/17/20, TBB, Cilk, pthread
cores can be
hardware ‘network

multithreaded interface . .
o interconnection network

memory
J o Heterogeneous: CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20,
M M

memory OpenACC, CUDA, hip, RocM, C++ AMP, Intrinsics, OpenGL, Vulkan,
———— CUDA, DirectX

EEEEEE PY
PCI IEEEEDE Heterogeneous: Multicore SMP+GPU Cluster: OpenCL, OpenMP, SYCL, C++17/20
EEEEEE M M
EEEEEE
memory EEEEEE

o Heterogeneous: “Fused” CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20, hip,
RocM, Intrinsics, OpenGL, Vulkan, DirectX

Hn |

memory

® codeplay’ “ “’O Codeplay Software Ltd.

Which Programming model works on all the Architectures?lIs there a pattern?

3 Multicore Manycore
Manycore vs Multicore CPU: OpenCL, OpenMP, SYCL,

)

memory

C++11/14/17/20, TBB, Cilk, pthread

memory

cores can be
hardware
multithreaded
(hyperthread)

Heterogeneous: CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20,

OpenACC, CUDA, hip, RocM, C++ AMP, Intrinsics, OpenGL, Vulkan,

CUDA, DirectX

PCI

memory

“Fused” CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20, hip,
RocM, Intrinsics, OpenGL, Vulkan, DirectX

Heterogeneous:

rrn

memory

® codeplay’

Heterogeneous: CPU+Manycore CPU: OpenCL, OpenMP, SYCL,

C++11

14/17/20. TBB, Cilk_nthread

interface

interconnection network

-

Heterogeneous: Multicore SMP+GPU Cluster: OpenCL, OpenMP, SYCL, C++17/20

M

M

To support all the different parallel architectures

 With a single source * You really only have a
code base few choices
 And if you also want it 77 -

to be an International OpenCL
Open Specification
 And if you want it to be
growing with the
architectures

® codeplay’ © 2020 Codeplay Software Ltd.

Act 2

The four horsemen of heterogeneous programming

® codeplay’ © 2020 Codeplay Software Ltd.

Simon Mcintosh-Smith annual language citations

10,000
9,000
8,000
o 7,000 === Open CL
§. 6,000 ==0penMP
o
MPI
S 5,000 -f_
g wil== CUDA
g 4,000 g Cilk
3
Z 3,000 e
2,000 OpenACC
SYCL
1,000 :
0 ’ P : s

0’\6%60),@,\,'\,’\/”)&‘),»‘0,\”\,&.\9

o
Q S S AN
SRR SRR RPN S P RS
® codep (c) Simon Mcintosh-Smith 2020 0 Codeplay Software Ltd.

The Reality

Performance

Productivity Portability

® codeplay” © 2020 Codeplay Software Ltd.

Long Answer

» The right programming model can allow you to express a
problem in a way which adapts to different architectures

® codeplay” © 2020 Codeplay Software Ltd.

Use the right abstraction now

Abstraction How is it supported

Cores
HW threads
Vectors

Atomic, Fences, lockfree, futures, counters,
transactions

Parallel Loops
Heterogeneous offload, fpga

Distributed
Caches
Numa

TLS

Exception handling in concurrent environment

C++11/14/17 threads, async
C++11/14/17 threads, async
Parallelism TS2

C++11/14/17 atomics, Concurrency TS1,
Transactional Memory TS1

Async, TBB:parallel _invoke, C++17 parallel
algorithms, for_each

OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja,
CUDA

HPX, MPI, UPC++

C++17 false sharing support
OpenMP/ACC?

?

?

The Four Horsemen

The High Cost of Data Movement

20mm

-_—
64"?50[:5 —B8 | 26pJ 256 pJ 16nd L Sm
256-bit Efficient
buses CUO [- off-chip link —-’
=
50 p {

256-bit access

8 kB SRAM
n

Socket 0 || Socket 1
Core 0 || Core 1 || Core 0 || Core 1
o [fl2][3Jlofla]fl2][3f[o [f[2][3][o]f[1][2][3
oJla4 [[JLafls L [VL2016 J[|37][[

® codeplay’ © 2020 Codeplay Software Ltd.

Cost of Data Movement

* 64bit DP Op:

The High Cost of Data Movement * 20pJ
Fetching operands costs more than computing on them . .
) * 4x64bit register read:
* 50pJ
256 pJ 16nJ [Eﬁ@ﬁ .
| _ * 4x64bit move 1Imm:
256 bt 500 pJ [EMGent, . 26p)
256-bit access .
KB SRAM * 4x64bit move 40mm:
* 1nJ
e 4x64bit move DRAM:
Credit: Bill Dally, Nvidia, 16nJ

2010

® codeplay’ © 2020 Codeplay Software Ltd.

Implicit vs Explicit Data Movement

Examples:
* SYCL, C++ AMP

Implementation:

e Data is moved to the device
implicitly via cross host CPU /
device data structures

Examples:
* OpenCL, CUDA, OpenMP

Implementation:

e Data is moved to the device via
explicit copy APlIs

Here we’re using C++ AMP as an

_ example
array view<float> ptr;

extent<2> e (64, 64);
parallel for each(e, [=] (index<2> 1dx)
restrict (amp) {

ptrlidx] *= 2.0f;

});

Here we’re using CUDA as an
fFloat *h a = { .. ©Xgmple

cudaMalloc ((void **)&d a, size);

cudaMemcpy(d a, h a, size,
cudaMemcpyHostToDevice) ;

vec add<<<e4, 64>>>(a, b, c);

cudaMemcpy(d a, h a, size,
cudaMemcpyDeviceToHost) ;

® codeplay”

© 2020 Codeplay Software Ltd.

Row-major vs column-major

int x = globalld[@];
int y = globalld[1];
int stride = 4;

out[(x * stride) + y] =
in[(y * stride) + x];

® codeplay” © 2020 Codeplay Software Ltd.

A0S vs SOA

2x load operations

struct str { B I I I I I I R .
float f[N]; FLF|E|F|F[F[F i a i [ii|ilil]ti

};int I[NT; AN N NI S
S

s.f[globalld]; % % é % é %
I R

s.i[globalld]; % é %

® codeplay” © 2020 Codeplay Software Ltd.

Socket 0 Socket 1
Core O Corel Core O Corel
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 & 4 5 6 7

auto exec = execution::execution_context{execRes}.executor()

auto affExec = execution::require (exec, execution: :bulk,

execution: :bulk execution affinity.compact);

affExec.bulk execute([] (std::size t i, shared s) {
func (i) ;
}, 8, sharedFactory) ;

® codeplay”

© 2020 Codeplay Software Ltd.

this_system::get_resources()

SyStem-Ievel Place where std::thread executes GPU
resources
Package
Numa 0 Numa 1 Work Groups
Processing Elements
relativeLatency = > affinity_query<read, latency>(core3, numao)

® codeplay” © 2020 Codeplay Software Ltd.

Act 3

C++, OpenCL, OpenMP, SYCL

7 A
OpenCL

SYCL. OpenMP

® codeplay’ © 2020 Codeplay Software Ltd.

® codeplay” © 2020 Codeplay Software Ltd.

Example: SAXPY

Single-precision @ times X plus Y vector addition

y=ax+y

® codeplay” © 2020 Codeplay Software Ltd.

Serial SAXPY Implementation

1 void saxpy_serial(

size_t n, // the number of elements in the vectors
float a, // scale factor

const float x[1, / thefirstinputvector

float yL] // the output vector and second input vector

for (size .t i =0; 1 < n; ++i1)

2

3

4

5

6) {
7

8 ylil = a = x[i] + y[i];
9

® codeplay” © 2020 Codeplay Software Ltd.

Kokkos

OpenCL

OpenMP HPX

SYCL Raja

CUDA Boost.Compute

(inteD

Core™i7

® codeplay’ © 2020 Codeplay Software Ltd.

Paral

el/concurrency before C++11 (C++98)

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous (GPUs,
accelerators, FPGA,
embedded Al processors)

summary tasks that run operations on groups of avoid races and Dispatch/offload to other
independently and things, exploit parallelism synchronizing objects in nodes (including
communicate via in data and algorithm shared memory distributed)
messages structures

examples GUI,background printing, trees, quicksorts, locked data(99%), lock- Pipelines, reactive
disk/net access compilation free libraries (wizards), programming, offload,,

atomics (experts) target, dispatch
key metrics responsiveness throughput, many core race free, lock free Independent forward

scalability

progress,, load-shared

requirement

isolation, messages

low overhead

composability

Distributed, heterogeneous

today's abstractions

POSIX threads, win32
threads, OpenCL, vendor
intrinsic

openmp, TBB, PPL,
OpenCL, vendor intrinsic

locks, lock hierarchies,

vendor atomic instructions,

vendor intrinsic

OpenCL, CUDA

© 2020 Codepla 0 are Ltd

Parallel/concurrency after C++11

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous (GPUs,
accelerators, FPGA,
embedded Al processors)

scalability

summary tasks that run independently and | operations on groups of avoid races and Dispatch/offload to other
communicate via messages things, exploit parallelism | synchronizing objects in nodes (including distributed)
in data and algorithm shared memory
structures
examples GUI,background printing, trees, quicksorts, locked data(99%), lock-free | Pipelines, reactive
disk/net access compilation libraries (wizards), atomics programming, offload,,
(experts) target, dispatch
key metrics responsiveness throughput, many core race free, lock free Independent forward

progress,, load-shared

requirement

isolation, messages

low overhead

composability

Distributed, heterogeneous

today's abstractions

® codeplay”

C++11: thread,lambda function,

TLS, Async

C++11: Async, packaged
tasks, promises, futures,
atomics

C++11: locks, memory

model, mutex, condition
variable, atomics, static
init/term

C++11: lambda

© 2020 Codeplay Software Ltd.

Parall

/con

Asynchronus Agents

I'r

C++14

ency after

Concurrent collections

Mutable shared state

Heterogeneous

summary tasks that run independently | operations on groups of avoid races and Dispatch/offload to other
and communicate via things, exploit parallelism in | synchronizing objects in nodes (including distributed)
messages data and algorithm shared memory

structures

examples GUI,background printing, trees, quicksorts, compilation | locked data(99%), lock-free | Pipelines, reactive

disk/net access libraries (wizards), atomics programming, offload,,
(experts) target, dispatch
key metrics responsiveness throughput, many core race free, lock free Independent forward

scalability

progress,, load-shared

requirement

isolation, messages

low overhead

composability

Distributed, heterogeneous

today's abstractions

C++11: thread,lambda
function, TLS, async

C++14: generic lambda

C++11: Async, packaged
tasks, promises, futures,
atomics,

C++11: locks, memory
model, mutex, condition
variable, atomics, static
init/term,

C++ 14:

shared_lock/shared_timed

C++11: lambda

C++14: none

Parallel/concurrency after C++17

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous (GPUs, accelerators,
FPGA, embedded Al processors)

summary

tasks that run independently and
communicate via messages

operations on groups
of things, exploit
parallelism in data and
algorithm structures

avoid races and
synchronizing objects
in shared memory

Dispatch/offload to other nodes (including
distributed)

today's abstractions

® codeplay”

C++11: thread,lambda function, TLS,

async

C++14: generic lambda

C++11: Async,
packaged tasks,
promises, futures,
atomics,

C++ 17: ParallelSTL,
control false sharing

C++11: locks, memory
model, mutex,
condition variable,
atomics, static
init/term,

C++ 14:
shared_lock/shared _ti
med_mutex, OOTA,
atomic_signal_fence,
C++ 17: scoped _lock,
shared_mutex,
ordering of memory
models, progress
guarantees, TOE,
execution policies

C++11: lambda
C++14: generic lambda

C++17: progress guarantees, TOE,
execution policies

© 2020 Codeplay Software Ltd.

Example: %#HH%HHHHH

* Saxpy == Scalar Alpha X Plus Y
Scalar multiplication and vector addition

for (int i=0; i<n; i++)
z[i] = a * x[i] + y[i];

int start = .; Parallel
int end 5 ol

for (int t=0; t<NumThreads; t++)

{
thread(

[&z,x,y,a,start,end]() -> void
{
for (int i = start; i < end; i++)
z[1] = a * x[1] + y[i];
}
)s

start += .;

® codeplay” Codeplay Software Ltd.

Demo #3: a complete example

*Matrix multiply...

® codeplaﬁoing Parallel with C++11 © 2020 Codeplay Software Ltd.

Sequential version...

I

/I Naive, triply-nested sequential solution:
I

for (int i = @; i < N; i++) *

{

@]
|

for (int j = ©; j < N; j++)
{ A B c
C[i][]] = e.e;

for (int k = @; k < N; k++)
C[i][3] += (A[i][k] * B[KI[31);

® codeplay”

© 2020 Codeplay Software Ltd.

Structured ("fork-join") parallelism

A common pattern when creating multiple
HipEEGIS— E

: Sequentia — #include <vector>
¥ 3
std: :vector<std: :thread> threads;
i Vo int cores = std::thread::hardware_concurrency();
/\ for (int i=@; i<cores; ++i) // 1 per core:
I B : \ 4 {
: Paralle : auto code = []() { DoSomeWork(); };
o v threads.push_back(thread(code));
.................. \ / }
M
join | vvfe
gres—y “| for (std::thread& t : threads) // new range-based for:
i Sequentia t.join();

® codeplay”

© 2020 Codeplay Software Ltd.

Parallel solution

/I '1 thread per core:

N / numthreads; / numthreads = thread::hardware_concurrency();

int rows =

int extra = N % numthreads;

int start = 9; I each thread does [start..end)
int end = rows;

vector<thread> workers;

fork

for (int t = 1; t <= numthreads; t++) 4+
if (t == numthreads) // lastthread does extra rows: ‘/// \\\‘
end += extra; i
workers.push_back(thread([start, end, N, &C, &A, &B]() l l
for (int i = start; i < end; i++) M

= sta
for (int j = 0; j < N; j++) \\\‘ ‘//,
{ S £

C[i][]] = e.e;

for (int k = @; k < N; k++) join
) C[i][3] += (A[i][k] * B[KI[31); J i
D)
start = end;
end = start + rows;
= for (thread& t : workers)

. t.join();
® codeplay © 2020 Codeplay Software Ltd.

C++ Directions Group: P2000

% Reb B smc 8 scc € Rev A Inse

 Cre (G Executo

&« cC @ i open-std.org r ; v @ ¥ Q easychair -> ¥

1 of19 Automatic Zoom *

Directions for ISO C++ P0939r0

Doc. no.: P0939r0

Date: 2018-02-10

Programming Language C++

Audience: All WG21

Reply to: Bjarne Stroustrup (bs@ms.com)

Direction for ISO C++

B. Dawes, H. Hinnant, B. Stroustrup, D. Vandevoorde, M. Wong

Revision History

* This s the initial version.

Main sections
History
Long-term Aims (decades
Medium-term Aims (3-10 years’
Priorities for C++20
Process Issues
The C++ Programmer’s Bill of Rights

® codeplay’

© 2020 Codeplay Software Ltd.

P2000:Modern hardware

We need better support for modern hardware, such as
executors/execution context, affinity support in C++

leading to heterogeneous/distributed computing
support, ...

® codeplay”

© 2020 Codeplay Software Ltd.

Parallel/concurrency aiming for C++20

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous/Distributed

today's
abstractions

C++11: thread,lambda
function, TLS, async

C++ 20: Jthreads
+interrupt _token,
coroutines

C++11: Async, packaged tasks,
promises, futures, atomics,

C++ 17: ParallelSTL, control false
sharing

C++ 20: Vec execution policy,
Algorithm un-sequenced policy,
span

C++11: locks, memory model, mutex,
condition variable, atomics, static
init/term,

C++ 14:
shared_lock/shared_timed_mutex,
OOTA, atomic_signal_fence,

C++ 17: scoped _lock, shared_mutex,
ordering of memory models, progress
guarantees, TOE, execution policies
C++20: atomic_ref, Latches and
barriers, atomic<shared_ptr>
Atomics & padding bits

Simplified atomic init

Atomic C/C++ compatibility
Semaphores and waiting

Fixed gaps in memory model ,

Improved atomic flags, Repair memory

model

C++11: lambda

C++14: generic lambda
C++17:, progress
guarantees, TOE, execution

policies

C++20: atomic_ref,, span

Parallel/Concurrency beyond C++20: C++23

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous/Dlstributed

today's
abstractions

C++11: thread,lambda
function, TLS, async

C++14: generic lambda

C++ 20: Jthreads +interrupt
_token

C++23: networking,
asynchronous algorithm,
reactive programming,
EALS, async2, executors

C++11: Async, packaged tasks,
promises, futures, atomics,

C++ 17: ParallelSTL, control false
sharing

C++ 20: Vec execution policy,
Algorithm un-sequenced policy
span

C++23: SMD<T>,new futures,
concurrent vector,task blocks,
unordered associative containers, two-
way executors with lazy sender-
receiver models, concurrent exception
handling, executors, mdspan

C++11: ...
C++ 14: ...
C++17: ...

C++20: atomic_ref, Latches and
barriers

atomic<shared_ptr>

Atomics & padding bits
Simplified atomic init

Atomic C/C++ compatibility
Semaphores and waiting

Fixed gaps in memory model ,
Improved atomic flags , Repair
memory model

C++23: hazard_pointers,
rcu/snapshot, concurrent queues,
counters, upgrade lock, TM lite,
more lock-free data structures,
asymmetric fences

C++17: , progress
guarantees, TOE, execution
policies

C++20: atomic_ref, mdspan,

C++23: SIMD<T>,affinity,
pipelines, EALS,
freestanding/embedded
support well specified,
mapreduce, ML/AI, reactive
programming executors,
mdspan

C++23: continue C++20

e Library support for coroutines
* Further Conceptifying Standard Library

* Further Range improvements (e.g., application of
ranges to parallel algorithms and operations on
containers and integration with coroutines)

A modular standard library

After C++20

e Much more libraries ® Machine learning support

° f_UdiO - ® Executors

®* Linear Algebra o :

* Graph data structures R NI :

* Tree Data structures Pattern Matching _

®* Task Graphs ® Better support for C++Tooling

¢ Differentiation ecosystem

o e : ® Further support for

* Light-weight transactional PP ,
locks heterogeneous programming

* Anew future and/or a new ® Graphics

. g’igggtics Library ® Better definition of freestanding

* Array style programming ® Education dependency
through mcﬁspan curriculum

® codeplay’ © 2020 Codeplay Software Ltd.

After C++23

e Reflection

e Pattern matching

* C++ ecosystem
 What about Contracts?

® codeplay”

What have we achieved so far for
C++207?

Concepts C++20 (adopted, including convenience syntax)
Contracts C++20 (@)

Ranges C++20 (adopted)

Coroutines C++20

Modules C++20

Reflection TS in C++20 timeframe, IS in C++23

Executors Lite in ®meframe, Full in C++23

Networking Execgtors, it . C++23
possibly Coroutines

future.then, async2 Executors

® codeplay’ © 2020 Codeplay Software Ltd.

SYCL Ecosystem

® ComputeCpp -
https://codeplay.com/products/computesuite/computecpp

triSYCL - https://github.com/triSYCL/triSYCL

SYCL - http://sycl.tech

SYCL ParallelSTL - https://github.com/KhronosGroup/SyclParallelSTL
VisionCpp - https://github.com/codeplaysoftware/visioncpp
SYCL-BLAS - https://github.com/codeplaysoftware/sycl-blas
TensorFlow-SYCL - https://github.com/codeplaysoftware/tensorflow
Eigen http://eigen.tuxfamily.org

® codeplay’ © 2020 Codeplay Software Ltd.

https://codeplay.com/products/computesuite/computecpp
https://github.com/triSYCL/triSYCL
http://sycl.tech/
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/visioncpp
https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/tensorflow
http://eigen.tuxfamily.org/

® codeplay”

Eigen Linear Algebra Library

SYCL backend in mainline

Focused on Tensor support, providing
support for machine learning/CNNs

Equivalent coverage to CUDA

Working on optimization for various
hardware architectures (CPU, desktop and
mobile GPUs)

https://bitbucket.org/eigen/eigen/

© 2020 Codeplay Software Ltd.

https://bitbucket.org/eigen/eigen/

® codeplay”

TensorFlow

SYCL backend support for all major CNN
operations

Complete coverage for major image
recognition networks

GooglLeNet, Inception-v2, Inception-v3,
ResNet,

Ongoing work to reach 100% operator
coverage and optimization for various
hardware architectures (CPU, desktop and
mobile GPUs)

https://github.com/tensorflow/tensorflow

TensorFlow, the TensorFlow logo and any related marks are
trademarks of Google Inc.

© 2020 Codeplay Software Ltd.

https://github.com/tensorflow/tensorflow

SYCL Ecosystem

« Single-source heterogeneous programming using STANDARD C++
- Use C++ templates and lambda functions for host & device code
- Layered over OpenCL

» Fast and powerful path for bring C++ apps and libraries to OpenCL
- C++ Kernel Fusion - better performance on complex software than hand-coding
- Halide, Eigen, Boost.Compute, SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL GTX
- Clang, triSYCL, ComputeCpp, VisionCpp, ComputeCpp SDK ...

¢ More information at http://sycl.tech

Developer Choice
The development of the two specifications are aligned so ‘ k= ” S H ok I
code can be easily shared between the two approaches J\/ Q g J5

® codeplay”

C++ Kernel Language
Low Level Control
‘GPGPU’-style separation of
device-side kernel source
code and host code

OpenCL

Single-source C++

sl SYCL for OpenCL

Other technologies

Tr .) } 1 —
Programmer Familiarity) = == S,
Approach also taken by "‘:'/. | OpenCL Devices | ‘ cPU W
C++ AMP and OpenMP : & =)
orenet cPU \{Z % FPGA
|
| GPU DSP
[

© 2020 Codeplay Software Ltd.

http://sycl.tech/

® codeplay’

Standards

bodies

* HSA Foundation: Chair of
software group, spec editor of
runtime and debugging

« Khronos: chair & spec editor of

SYCL. Contributors to OpenCL,

Safety Critical, Vulkan

ISO C++: Chair of Low Latency,

Embedded WG; Editor of SG1

Concurrency TS

+ EEMBC: members
VectorC for x86

First showing of
VectorC{VU}

Delivered VectorC{VU}
to the National Center
for Supercomputing

VectorC{EE) released

2001 - 2003

Codeplay

Research

Members of EU research
consortiums: PEPPHER,
LPGPU, LPGPU2, CARP

« Sponsorship of PhDs and EngDs
for heterogeneous programming:
HSA, FPGAs, ray-tracing
Collaborations with academics
Members of HIPEAC

HSA LLDB Debugger

* SPIR-V tools

« RenderScript debugger in AOSP
+ LLDB for Qualcomm Hexagon
TensorFlow for OpenCL

C++ 17 Parallel STL for SYCL
VisionCpp: C++ performance-
portable programming model for
vision

Sieve C++ Programming

System released

Offload released for

Ageia chooses Codeplay

for PhysX

Codeplay joins the
Khronos Group

Sony PlayStation®3

OffloadCL technology
developed

Codeplay joins the
PEPPHER project

Becomes specification
editor of the SYCL
standard

Building an LLVM back-end
Creating an SPMD Vectorizer for
OpenCL with LLVM

Challenges of Mixed-Width
Vector Code Gen & Scheduling
in LLVM

C++ on Accelerators: Supporting
Single-Source SYCL and HSA
LLDB Tutorial: Adding debugger
support for your target

LLDB Machine Interface
Driver released

Codeplay joins the CARP
projec

Codeplay shows
technology to

Chair of HSA System
Runtime working group

Development of tools
ing the Vulkan

on OpenCL using SPIR

APL

Based in Edinburgh, Scotland
57 staff, mostly engineering
License and customize
technologies for semiconductor
companies

ComputeAorta and
ComputeCpp: implementations
of OpenCL, Vulkan and SYCL
15+ years of experience in
heterogeneous systems tools

Open-Source HSA
Debugger release

Releases partial
OpenCL support (via
SYCL) for Eigen Tensors
to power TensorFlow

ComputeAorta 1.0
release

ComputeCpp Community
Edition beta release

Codeplay build the software platforms that deliver massive performance

20 Codeplay Software Ltd.

What our ComputeCpp users say about us

= -

Tensor

“We at Google have been working
closely with Luke and his Codeplay
colleagues on this project for almost
12 months now. Codeplay's
contribution to this effort has been
tremendous, so we felt that we should
let them take the lead when it comes
down to communicating updates
related to OpenCL. ... we are
planning to merge the work that has
been done so far... we want to put
together a comprehensive test
infrastructure”

® codeplay’

ONERA

“We work with royalty-free SYCL
because it is hardware vendor
agnostic, single-source C++
programming model without platform
specific keywords. This will allow us to
easily work with any heterogeneous
processor solutions using OpenCL to
develop our complex algorithms and
ensure future compatibility”

Hartmut Kaiser - HPX

“My team and | are working with
Codeplay's ComputeCpp for almost a
year now and they have resolved
every issue in a timely manner, while
demonstrating that this technology can
work with the most complex C++
template code. | am happy to say that
the combination of Codeplay's SYCL
implementation with our HPX runtime
system has turned out to be a very
capable basis for Building a
Heterogeneous Computing Model for
the C++ Standard using high-level
abstractions.”

WIGNER Research Centre
for Physics

It was a great pleasure this week for
us, that Codeplay released the
ComputeCpp project for the wider
audience. We've been waiting for this
moment and keeping our colleagues
and students in constant rally and
excitement. We'd like to build on this
opportunity to increase the awareness
of this technology by providing sample
codes and talks to potential users.
We're going to give a lecture series on
modern scientific programming
providing field specific examples.*

© 2020 Codeplay Software Ltd.

Further information

® OpenCL https://www.khronos.org/opencl/
® OpenVX
https://www.khronos.org/openvx/
® HSA http://www.hsafoundation.com/
® SYCL http://sycl.tech
® OpenCV http://opencv.org/
® Halide http://halide-lang.org/
¢ VISIOﬂCpp https://github.com/codeplaysoftware/visioncpp

® codeplay” © 2020 Codeplay Software Ltd.

https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
http://www.hsafoundation.com/
http://sycl.tech/
http://opencv.org/
http://halide-lang.org/
https://github.com/codeplaysoftware/visioncpp

SYCL.
C ComputeCpp

Community Edition
Available now for free!

Visit:
computecpp.codeplay.com

® codeplay’ © 2020 Codeplay Software Ltd.

SYCL.
C Co%uteCp

* Open source SYCL projects:
e ComputeCpp SDK - Collection of sample code and integration tools
e SYCL ParallelSTL — SYCL based implementation of the parallel algorithms
 VisionCpp — Compile-time embedded DSL for image processing
e Eigen C++ Template Library — Compile-time library for machine learning

All of this and more at: http://sycl.tech

® codeplay’ © 2020 Codeplay Software Ltd.

http://sycl.tech/

(. codeplay

ETEROGENEOUS S EXPERTS

Thanks

info@codeplay.co

m codeplay.com

@codeplaysoft

