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3 Act Play

1. Performance, Portability, 

Productivity

2. The four horsemen of 

heterogeneous 

programming

3. C++, OpenCL, OpenMP, 

SYCL
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Performance, Portability, Productivity

Act 1
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Houston, we have a software crisis!

Isn’t Parallel/Concurrent/Heterogeneous 
Programming Hard?
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So What are the Goals?
Goals of Parallel Programming over and above 
sequential programming

1. Performance

2. Productivity

3. Portability
Performance

Productivity

Portability

The Iron Triangle of Parallel Programming language nirvana
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Why does productivity make the list?
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Performance
• Broadly includes scalability and efficiency

• If not for performance why not just write 
sequential program?

• parallel programming is primarily a performance 
optimization, and, as such, it is one potential 
optimization of many.

Diagram thanks to Paul McKenney



© 2020 Codeplay Software Ltd.13

Are there no cases where parallel programming is 
about something other than performance?
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Productivity
Perhaps at one time, the sole purpose of parallel 
software was performance. Now, however, 
productivity is gaining the spotlight.

Diagram thanks to Paul McKenney
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Given how cheap parallel systems have become, 
how can anyone afford to pay people to program 

them?
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Iron Triangle of Parallel Programming Language Nirvana

Performance

Productivity

Portability
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Performance Portability Productivity 

OpenCL

OpenMP

CUDA

SYCL

Iron Triangle of Parallel Programming Nirvana is about making  engineering tradeoffs 

P
o

rta
b

ility
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Concurrency vs Parallelism

What makes parallel or concurrent programming harder 
than serial programming? What’s the difference? How 
much of this is simply a new mindset one has to adopt?
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Which one to choose?
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CPU GPUAccelerator

FPGAAPUDSP

Heterogeneous Devices
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Hot Chips
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• Shared Memory
Multiprocessor (SMP)
• Shared memory address 

space
• Bus-based memory system

• Interconnection network

Fundamental Parallel Architecture Types

• Uniprocessor
• Scalar processor

• Single Instruction 
Multiple Data (SIMD)

• Single Instruction 
Multiple Thread (SIMT)

processor

memory

processor processor

memory

bus

processor processor

memory

network

…

…

…

processor

memory

…

23
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SIMD vs SIMT
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Distributed  and network Parallel Architecture Types

• Distributed Memory
Multiprocessor

• Message passing
between nodes

• Massively Parallel Processor 
(MPP)
• Many, many processors

• Cluster of SMPs
• Shared memory 

addressing within SMP 
node

• Message passing between 
SMP nodes

• Can also be regarded as 
MPP if processor number 
is large

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

… …

… …
…

…

interconnection network

MM

MM

PP P P

PPPP

…

…

network
interface

25

Introduction to Parallel 

Computing, University of 

Oregon, IPCC
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Modern Parallel Architecture 
• Heterogeneous: CPU+Manycore CPU

• Heterogeneous: Multicore SMP+GPU Cluster 

 Multicore Manycore

 Manycore vs Multicore CPU

 Heterogeneous: CPU + GPU 

 Heterogeneous: “Fused” CPU + GPU

memory

C C C C
m m m m

processor

memory

PCI

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

processor

memory

cores can be
hardware
multithreaded
(hyperthread)
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Modern Parallel Programming model 
• Heterogeneous: CPU+Manycore CPU: OpenCL, OpenMP, SYCL, 

C++11/14/17/20, TBB, Cilk, pthread

• Heterogeneous: Multicore SMP+GPU Cluster: OpenCL, OpenMP, SYCL, C++17/20

 Multicore Manycore
 Manycore vs Multicore CPU: OpenCL, OpenMP, SYCL, 

C++11/14/17/20, TBB, Cilk, pthread

 Heterogeneous: CPU + GPU: OpenCL, OpenMP, SYCL,  C++17/20, 
OpenACC, CUDA, hip, RocM, C++ AMP, Intrinsics, OpenGL, Vulkan, 
CUDA, DirectX

 Heterogeneous: “Fused” CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20, hip, 
RocM, Intrinsics, OpenGL, Vulkan, DirectX

memory
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m m m m

processor

memory
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processor

memory
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hardware
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(hyperthread)
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Which Programming model works on all the Architectures?Is there a pattern?

• Heterogeneous: CPU+Manycore CPU: OpenCL, OpenMP, SYCL, 
C++11/14/17/20, TBB, Cilk, pthread

• Heterogeneous: Multicore SMP+GPU Cluster: OpenCL, OpenMP, SYCL, C++17/20

 Multicore Manycore
 Manycore vs Multicore CPU: OpenCL, OpenMP, SYCL, 

C++11/14/17/20, TBB, Cilk, pthread

 Heterogeneous: CPU + GPU: OpenCL, OpenMP, SYCL,  C++17/20, 
OpenACC, CUDA, hip, RocM, C++ AMP, Intrinsics, OpenGL, Vulkan, 
CUDA, DirectX

 Heterogeneous: “Fused” CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20, hip, 
RocM, Intrinsics, OpenGL, Vulkan, DirectX

memory
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m m m m
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To support all the different parallel architectures

• With a single source 
code base

• And if you also want it 
to be an International 
Open Specification

• And if you want it to be 
growing with the 
architectures

• You really only have a 
few choices
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Act 2

The four horsemen of heterogeneous programming
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Simon Mcintosh-Smith annual language citations
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The Reality

Performance

PortabilityProductivity
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Long Answer

➢ The right programming model can allow you to express a 
problem in a way which adapts to different architectures

Yes
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Use the right abstraction now
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async

Vectors Parallelism TS2

Atomic, Fences, lockfree, futures, counters, 

transactions

C++11/14/17 atomics, Concurrency TS1, 

Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel 

algorithms, for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja, 

CUDA

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa OpenMP/ACC?

TLS ?

Exception handling in concurrent environment ?
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The Four Horsemen

Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

0 4 1 5 2 6 3 7
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Cost of Data Movement

• 64bit DP Op:
• 20pJ

• 4x64bit register read:
• 50pJ

• 4x64bit move 1mm:
• 26pJ

• 4x64bit move 40mm:
• 1nJ

• 4x64bit move DRAM:
• 16nJCredit: Bill Dally, Nvidia, 

2010
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Implicit vs Explicit Data Movement

array_view<float> ptr;

extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) 

restrict(amp) {

ptr[idx] *= 2.0f;

});

Here we’re using OpenMP as an 

example

float *h_a = { … }, d_a;

cudaMalloc((void **)&d_a, size);

cudaMemcpy(d_a, h_a, size, 

cudaMemcpyHostToDevice);

vec_add<<<64, 64>>>(a, b, c);

cudaMemcpy(d_a, h_a, size, 

cudaMemcpyDeviceToHost);

Examples:
• OpenCL, CUDA, OpenMP

Implementation:
• Data is moved to the device via 

explicit copy APIs

Here we’re using C++ AMP as an 

example

Examples:
• SYCL, C++ AMP

Implementation:
• Data is moved to the device 

implicitly via cross host CPU / 
device data structures

Here we’re using CUDA as an 

example
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Row-major vs column-major

int x = globalId[0];
int y = globalId[1];
int stride = 4;

out[(x * stride) + y] = 
in[(y * stride) + x];
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AoS vs SoA

struct str {

float f[N];

int i[N];

};

str s;

… = s.f[globalId];

… = s.i[globalId];

f f f f f f f f i i i i i i i i

2x load operations
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Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

0 1 2 3 4 5 6 7

{

auto exec = execution::execution_context{execRes}.executor();

auto affExec = execution::require(exec, execution::bulk,

execution::bulk_execution_affinity.compact);

affExec.bulk_execute([](std::size_t i, shared s) {

func(i);

}, 8, sharedFactory);

}
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Package

Numa 0 Numa 1

Core 0 Core 2Core 1 Core 3

this_system::get_resources()

Place where std::thread executes GPU
System-level 

resources

Processing Elements

Work Groups

relativeLatency = affinity_query<read, latency>(core2, numa0) > affinity_query<read, latency>(core3, numa0)
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Act 3

C++, OpenCL, OpenMP, SYCL



© 2020 Codeplay Software Ltd.43



© 2020 Codeplay Software Ltd.44

Example: SAXPY

single-precision a times x plus y vector addition

y = αx + y



© 2020 Codeplay Software Ltd.45

45

Serial SAXPY Implementation
Introduction to Parallel Computing, University of Oregon, IPCC
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The Quiet Revolution

Kokkos

HPX

Raja

Boost.Compute

OpenCL

OpenMP

SYCL

CUDA
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Parallel/concurrency before C++11 (C++98)
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs, 

accelerators, FPGA, 

embedded AI processors)

summary tasks that run 

independently and 

communicate via 

messages

operations on groups of 

things, exploit parallelism 

in data and algorithm 

structures

avoid races and 

synchronizing objects in 

shared memory

Dispatch/offload to other 

nodes (including 

distributed)

examples GUI,background printing, 

disk/net access

trees, quicksorts, 

compilation

locked data(99%), lock-

free libraries (wizards), 

atomics (experts)

Pipelines, reactive 

programming, offload,, 

target, dispatch

key metrics responsiveness throughput, many core 

scalability

race free, lock free Independent forward 

progress,, load-shared 

requirement isolation, messages low overhead composability Distributed, heterogeneous

today's abstractions POSIX threads, win32 

threads, OpenCL, vendor 

intrinsic

openmp, TBB, PPL, 

OpenCL, vendor intrinsic 

locks, lock hierarchies, 

vendor atomic instructions, 

vendor intrinsic

OpenCL, CUDA
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Parallel/concurrency after C++11
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs, 

accelerators, FPGA, 

embedded AI processors)

summary tasks that run independently and 

communicate via messages

operations on groups of 

things, exploit parallelism 

in data and algorithm 

structures

avoid races and 

synchronizing objects in 

shared memory

Dispatch/offload to other 

nodes (including distributed)

examples GUI,background printing, 

disk/net access

trees, quicksorts, 

compilation

locked data(99%), lock-free 

libraries (wizards), atomics 

(experts)

Pipelines, reactive 

programming, offload,, 

target, dispatch

key metrics responsiveness throughput, many core 

scalability

race free, lock free Independent forward 

progress,, load-shared 

requirement isolation, messages low overhead composability Distributed, heterogeneous

today's abstractions C++11: thread,lambda function, 

TLS, Async

C++11: Async, packaged 

tasks, promises, futures, 

atomics

C++11: locks, memory 

model, mutex, condition 

variable, atomics, static 

init/term

C++11: lambda
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Parallel/concurrency after C++14
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous

summary tasks that run independently 

and communicate via 

messages

operations on groups of 

things, exploit parallelism in 

data and algorithm 

structures

avoid races and 

synchronizing objects in 

shared memory

Dispatch/offload to other 

nodes (including distributed)

examples GUI,background printing, 

disk/net access

trees, quicksorts, compilation locked data(99%), lock-free 

libraries (wizards), atomics 

(experts)

Pipelines, reactive 

programming, offload,, 

target, dispatch

key metrics responsiveness throughput, many core 

scalability

race free, lock free Independent forward 

progress,, load-shared 

requirement isolation, messages low overhead composability Distributed, heterogeneous

today's abstractions C++11: thread,lambda 

function, TLS, async

C++14: generic lambda

C++11: Async, packaged 

tasks, promises, futures, 

atomics, 

C++11: locks, memory 

model, mutex, condition 

variable, atomics, static 

init/term, 

C++ 14: 

shared_lock/shared_timed_

mutex, OOTA, 

atomic_signal_fence, 

C++11: lambda

C++14: none
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Parallel/concurrency after C++17
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs, accelerators, 

FPGA, embedded AI processors)

summary tasks that run independently and 

communicate via messages

operations on groups 

of things, exploit 

parallelism in data and 

algorithm structures

avoid races and 

synchronizing objects 

in shared memory

Dispatch/offload to other nodes (including 

distributed)

today's abstractions C++11: thread,lambda function, TLS, 

async

C++14: generic lambda

C++11: Async, 

packaged tasks, 

promises, futures, 

atomics, 

C++ 17: ParallelSTL, 

control false sharing

C++11: locks, memory 

model, mutex, 

condition variable, 

atomics, static 

init/term, 

C++ 14: 

shared_lock/shared_ti

med_mutex, OOTA, 

atomic_signal_fence, 

C++ 17: scoped _lock, 

shared_mutex, 

ordering of memory 

models, progress 

guarantees, TOE, 

execution policies

C++11: lambda

C++14: generic lambda

C++17: progress guarantees, TOE, 

execution policies
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• Saxpy == Scalar Alpha X Plus Y

– Scalar multiplication and vector addition

5
1

Example:  saxpyx

y

z

for (int i=0; i<n; i++)
z[i] = a * x[i] + y[i];

int start = …;
int end   = …;

for (int t=0; t<NumThreads; t++)
{

thread(
[&z,x,y,a,start,end]() -> void
{

for (int i = start; i < end; i++)
z[i] = a * x[i] + y[i];

}
);

start += …;
end   += …;

}

Parallel
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•Matrix multiply…

Demo #3:  a complete example

Going Parallel with C++11
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5
4

Sequential version…

//

// Naïve, triply-nested sequential solution:

//

for (int i = 0; i < N; i++)

{   

for (int j = 0; j < N; j++) 

{

C[i][j] = 0.0;

for (int k = 0; k < N; k++)

C[i][j] += (A[i][k] * B[k][j]);

}

}
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• A common pattern when creating multiple 
threads

5
5

Structured ("fork-join") parallelism

fork

join

Sequentia
l

Sequentia
l

Paralle
l

#include <vector>

std::vector<std::thread>  threads;

int cores = std::thread::hardware_concurrency();

for (int i=0; i<cores; ++i)  // 1 per core:

{
auto code = []() { DoSomeWork(); };
threads.push_back( thread(code) );

}

for (std::thread& t : threads) // new range-based for:

t.join();
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5
6

Parallel solution
int rows = N / numthreads;
int extra = N % numthreads;
int start = 0;     // each thread does [start..end)
int end = rows;

vector<thread>  workers;

for (int t = 1; t <= numthreads; t++)
{

if (t == numthreads) // last thread does extra rows:
end += extra;

workers.push_back( thread([start, end, N, &C, &A, &B]()
{

for (int i = start; i < end; i++)
for (int j = 0; j < N; j++)
{

C[i][j] = 0.0;
for (int k = 0; k < N; k++)

C[i][j] += (A[i][k] * B[k][j]);
}

}));

start = end;
end   = start + rows;

} for (thread& t : workers)
t.join();

// 1 thread per core:
numthreads = thread::hardware_concurrency();
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C++ Directions Group: P2000
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P2000:Modern hardware

We need better support for modern hardware, such as 
executors/execution context, affinity support in C++ 
leading to heterogeneous/distributed computing 
support, ...
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Parallel/concurrency aiming for C++20
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous/Distributed

today's 

abstractions

C++11: thread,lambda 

function, TLS, async

C++ 20: Jthreads

+interrupt _token, 

coroutines

C++11: Async, packaged tasks, 

promises, futures, atomics, 

C++ 17: ParallelSTL, control false 

sharing

C++ 20:  Vec execution policy, 

Algorithm un-sequenced policy, 

span

C++11: locks, memory model, mutex, 

condition variable, atomics, static 

init/term, 

C++ 14: 

shared_lock/shared_timed_mutex, 

OOTA, atomic_signal_fence, 

C++ 17: scoped _lock, shared_mutex, 

ordering of memory models, progress 

guarantees, TOE, execution policies

C++20: atomic_ref, Latches and 

barriers, atomic<shared_ptr>

Atomics & padding bits 

Simplified atomic init

Atomic C/C++ compatibility 

Semaphores and waiting 

Fixed gaps in memory model , 

Improved atomic flags, Repair memory 

model 

C++11: lambda

C++14: generic lambda

C++17: , progress 

guarantees, TOE, execution 

policies

C++20: atomic_ref,, span
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Parallel/Concurrency beyond C++20: C++23
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous/DIstributed

today's 

abstractions

C++11: thread,lambda 

function, TLS, async

C++14: generic lambda

C++ 20: Jthreads +interrupt 

_token

C++23: networking, 

asynchronous algorithm, 

reactive programming, 

EALS, async2, executors

C++11: Async, packaged tasks, 

promises, futures, atomics, 

C++ 17: ParallelSTL, control false 

sharing

C++ 20: Vec execution policy, 

Algorithm un-sequenced policy 

span

C++23: SMD<T>,new futures, 

concurrent  vector,task blocks, 

unordered associative containers, two-

way executors with lazy sender-

receiver models, concurrent exception 

handling, executors, mdspan

C++11: …

C++ 14: …

C++ 17: …

C++20: atomic_ref, Latches and 

barriers

atomic<shared_ptr>

Atomics & padding bits 

Simplified atomic init

Atomic C/C++ compatibility 

Semaphores and waiting 

Fixed gaps in memory model , 

Improved atomic flags , Repair 

memory model 

C++23: hazard_pointers, 

rcu/snapshot, concurrent queues, 

counters, upgrade lock, TM lite,  

more lock-free data structures, 

asymmetric fences

C++17: , progress 

guarantees, TOE, execution 

policies

C++20: atomic_ref, mdspan, 

C++23: SIMD<T>,affinity, 

pipelines, EALS, 

freestanding/embedded 

support well specified, 

mapreduce, ML/AI, reactive 

programming executors, 

mdspan
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C++23: continue C++20
• Library support for coroutines

• Further Conceptifying Standard Library

• Further Range improvements (e.g., application of 
ranges to parallel algorithms and operations on 
containers and integration with coroutines)

• A modular standard library
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After C++20
• Much more libraries

• Audio
• Linear Algebra
• Graph data structures
• Tree Data structures
• Task Graphs
• Differentiation
• Reflection
• Light-weight transactional 

locks
• A new future and/or a new 

async
• Statistics Library
• Array style programming 

through mdspan

• Machine learning support
• Executors
• Networking
• Pattern Matching
• Better support for C++Tooling 

ecosystem
• Further support for 

heterogeneous programming
• Graphics
• Better definition of freestanding
• Education dependency 

curriculum
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After C++23
• Reflection

• Pattern matching

• C++ ecosystem

• What about Contracts?
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What have we achieved so far for 
C++20?
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SYCL Ecosystem
● ComputeCpp -

https://codeplay.com/products/computesuite/computecpp
● triSYCL - https://github.com/triSYCL/triSYCL
● SYCL - http://sycl.tech
● SYCL ParallelSTL - https://github.com/KhronosGroup/SyclParallelSTL
● VisionCpp - https://github.com/codeplaysoftware/visioncpp
● SYCL-BLAS - https://github.com/codeplaysoftware/sycl-blas
● TensorFlow-SYCL - https://github.com/codeplaysoftware/tensorflow
● Eigen http://eigen.tuxfamily.org

https://codeplay.com/products/computesuite/computecpp
https://github.com/triSYCL/triSYCL
http://sycl.tech/
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/visioncpp
https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/tensorflow
http://eigen.tuxfamily.org/
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Eigen Linear Algebra Library
SYCL backend in mainline

Focused on Tensor support, providing 

support for machine learning/CNNs

Equivalent coverage to CUDA

Working on optimization for various 

hardware architectures (CPU, desktop and 

mobile GPUs)

https://bitbucket.org/eigen/eigen/

https://bitbucket.org/eigen/eigen/
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TensorFlow
SYCL backend support for all major CNN 

operations

Complete coverage for major image 

recognition networks

GoogLeNet, Inception-v2, Inception-v3, 

ResNet, ….

Ongoing work to reach 100% operator 

coverage and optimization for various 

hardware architectures (CPU, desktop and 

mobile GPUs)

https://github.com/tensorflow/tensorflow

TensorFlow, the TensorFlow logo and any related marks are 

trademarks of Google Inc.

https://github.com/tensorflow/tensorflow
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SYCL Ecosystem
• Single-source heterogeneous programming using STANDARD C++

- Use C++ templates and lambda functions for host & device code

- Layered over OpenCL

• Fast and powerful path for bring C++ apps and libraries to OpenCL

- C++ Kernel Fusion - better performance on complex software than hand-coding

- Halide, Eigen, Boost.Compute, SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL GTX

- Clang, triSYCL, ComputeCpp, VisionCpp, ComputeCpp SDK …

• More information at http://sycl.tech

C++ Kernel Language
Low Level Control

‘GPGPU’-style separation of 

device-side kernel source 

code and host code

Single-source C++
Programmer Familiarity

Approach also taken by 

C++ AMP and OpenMP

Developer Choice
The development of the two specifications are aligned so 
code can be easily shared between the two approaches

http://sycl.tech/
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Codeplay
Standards 

bodies
• HSA Foundation: Chair of 

software group, spec editor of 
runtime and debugging

• Khronos: chair & spec editor of 
SYCL. Contributors to OpenCL, 
Safety Critical, Vulkan

• ISO C++: Chair of Low Latency, 
Embedded WG; Editor of SG1 
Concurrency TS

• EEMBC: members

Research

• Members of EU research 
consortiums: PEPPHER, 
LPGPU, LPGPU2, CARP

• Sponsorship of PhDs and EngDs
for heterogeneous programming: 
HSA, FPGAs, ray-tracing

• Collaborations with academics

• Members of HiPEAC

Open 
source

• HSA LLDB Debugger

• SPIR-V tools

• RenderScript debugger in AOSP

• LLDB for Qualcomm Hexagon

• TensorFlow for OpenCL

• C++ 17 Parallel STL for SYCL

• VisionCpp: C++ performance-
portable programming model for 
vision

Presentati
ons

• Building an LLVM back-end

• Creating an SPMD Vectorizer for 
OpenCL with LLVM

• Challenges of Mixed-Width 
Vector Code Gen & Scheduling 
in LLVM

• C++ on Accelerators: Supporting 
Single-Source SYCL and HSA

• LLDB Tutorial: Adding debugger 
support for your target

Company

• Based in Edinburgh, Scotland

• 57 staff, mostly engineering

• License and customize 
technologies for semiconductor 
companies

• ComputeAorta and 
ComputeCpp: implementations 
of OpenCL, Vulkan and SYCL

• 15+ years of experience in 
heterogeneous systems tools

Codeplay build the software platforms that deliver massive performance
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What our ComputeCpp users say about us

“We at Google have been working 
closely with Luke and his Codeplay 
colleagues on this project for almost 

12 months now. Codeplay's 
contribution to this effort has been 

tremendous, so we felt that we should 
let them take the lead when it comes 

down to communicating updates 
related to OpenCL. …  we are 

planning to merge the work that has 
been done so far… we want to put 

together a comprehensive test 
infrastructure”

Benoit Steiner – Google 
TensorFlow engineer

“We work with royalty-free SYCL 
because it is hardware vendor 
agnostic, single-source C++ 

programming model without platform 
specific keywords. This will allow us to 

easily work with any heterogeneous 
processor solutions using OpenCL to 
develop our complex algorithms and 

ensure future compatibility”

ONERA

“My team and I are working with 
Codeplay's ComputeCpp for almost a 

year now and they have resolved 
every issue in a timely manner, while 

demonstrating that this technology can 
work with the most complex C++ 

template code. I am happy to say that 
the combination of Codeplay's SYCL 
implementation with our HPX runtime 

system has turned out to be a very 
capable basis for Building a 

Heterogeneous Computing Model for 
the C++ Standard using high-level 

abstractions.”

Hartmut Kaiser - HPX

It was a great pleasure this week for 
us, that Codeplay released the 

ComputeCpp project for the wider 
audience. We've been waiting for this 
moment and keeping our colleagues 

and students in constant rally and 
excitement. We'd like to build on this 

opportunity to increase the awareness 
of this technology by providing sample 

codes and talks to potential users. 
We're going to give a lecture series on 

modern scientific programming 
providing field specific examples.“

WIGNER Research Centre

for Physics
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Further information

• OpenCL https://www.khronos.org/opencl/

• OpenVX
https://www.khronos.org/openvx/

• HSA http://www.hsafoundation.com/

• SYCL http://sycl.tech

• OpenCV http://opencv.org/

• Halide http://halide-lang.org/

• VisionCpp https://github.com/codeplaysoftware/visioncpp

https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
http://www.hsafoundation.com/
http://sycl.tech/
http://opencv.org/
http://halide-lang.org/
https://github.com/codeplaysoftware/visioncpp
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Community Edition

Available now for free!

Visit:

computecpp.codeplay.com
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• Open source SYCL projects:
• ComputeCpp SDK - Collection of sample code and integration tools

• SYCL ParallelSTL – SYCL based implementation of the parallel algorithms

• VisionCpp – Compile-time embedded DSL for image processing

• Eigen C++ Template Library – Compile-time library for machine learning

All of this and more at: http://sycl.tech

http://sycl.tech/


@codeplaysoft codeplay.com
info@codeplay.co

m

Thanks


