
The landscape of Parallel Programming Models
Part 1: Performance, Portability & Productivity

Michael Wong
Codeplay Software Ltd.
Distinguished Engineer

IXPUG 2020

© 2020 Codeplay Software Ltd.2

© 2020 Codeplay Software Ltd.3

Michael Wong

Ported
TensorFlow to

open
standards
using SYCL

Releasing open-
source, open-

standards based AI
acceleration tools:

SYCL-BLAS, SYCL-ML,
VisionCpp

Build LLVM-
based

compilers for
accelerators

Implement
OpenCL and

SYCL for
accelerator
processors

Distinguished Engineer

● Chair of SYCL Heterogeneous Programming Language
● C++ Directions Group
● ISOCPP.org Director, VP

http://isocpp.org/wiki/faq/wg21#michael-wong
● michael@codeplay.com
● fraggamuffin@gmail.com
● Head of Delegation for C++ Standard for Canada
● Chair of Programming Languages for Standards

Council of Canada
Chair of WG21 SG19 Machine Learning
Chair of WG21 SG14 Games Dev/Low
Latency/Financial Trading/Embedded

● Editor: C++ SG5 Transactional Memory Technical
Specification

● Editor: C++ SG1 Concurrency Technical Specification
● MISRA C++ and AUTOSAR
● Chair of Standards Council Canada TC22/SC32

Electrical and electronic components (SOTIF)

● Chair of UL4600 Object Tracking

● http://wongmichael.com/about

● C++11 book in Chinese:
https://www.amazon.cn/dp/B00ETOV2OQ

We build GPU compilers for semiconductor companies

Now working to make AI/ML heterogeneous acceleration safe for

autonomous vehicle

http://isocpp.org/wiki/faq/wg21
mailto:michael@codeplay.com
mailto:fraggamuffin@gmail.com
http://wongmichael.com/about

© 2020 Codeplay Software Ltd.4

Acknowledgement and Disclaimer
Numerous people internal and external

to the original C++/Khronos

group/OpenMP, in industry and

academia, have made contributions,

influenced ideas, written part of this

presentations, and offered feedbacks to

form part of this talk. These in clude

Bjarne Stroustrup, Joe Hummel, Botond

Ballo, Simon Mcintosh-Smith, as well as

many others.

But I claim all credit for errors, and stupid mistakes. These

are mine, all mine! You can’t have them.

© 2020 Codeplay Software Ltd.5

Legal Disclaimer

THIS WORK REPRESENTS THE VIEW OF THE
AUTHOR AND DOES NOT NECESSARILY
REPRESENT THE VIEW OF CODEPLAY.

OTHER COMPANY, PRODUCT, AND SERVICE
NAMES MAY BE TRADEMARKS OR SERVICE

MARKS OF OTHERS.

© 2020 Codeplay Software Ltd.6

Disclaimers

NVIDIA, the NVIDIA logo and CUDA are trademarks and/or
registered trademarks of NVIDIA Corporation in the U.S.

and/or other countries

Codeplay is not associated with NVIDIA for this work and it is
purely using public documentation and widely available code

© 2020 Codeplay Software Ltd.7

3 Act Play

1. Performance, Portability,

Productivity

2. The four horsemen of

heterogeneous

programming

3. C++, OpenCL, OpenMP,

SYCL

© 2020 Codeplay Software Ltd.8

Performance, Portability, Productivity

Act 1

© 2020 Codeplay Software Ltd.9

Houston, we have a software crisis!

Isn’t Parallel/Concurrent/Heterogeneous
Programming Hard?

© 2020 Codeplay Software Ltd.10

So What are the Goals?
Goals of Parallel Programming over and above
sequential programming

1. Performance

2. Productivity

3. Portability
Performance

Productivity

Portability

The Iron Triangle of Parallel Programming language nirvana

© 2020 Codeplay Software Ltd.11

Why does productivity make the list?

© 2020 Codeplay Software Ltd.12

Performance
• Broadly includes scalability and efficiency

• If not for performance why not just write
sequential program?

• parallel programming is primarily a performance
optimization, and, as such, it is one potential
optimization of many.

Diagram thanks to Paul McKenney

© 2020 Codeplay Software Ltd.13

Are there no cases where parallel programming is
about something other than performance?

© 2020 Codeplay Software Ltd.14

Productivity
Perhaps at one time, the sole purpose of parallel
software was performance. Now, however,
productivity is gaining the spotlight.

Diagram thanks to Paul McKenney

© 2020 Codeplay Software Ltd.15

Given how cheap parallel systems have become,
how can anyone afford to pay people to program

them?

© 2020 Codeplay Software Ltd.16

Iron Triangle of Parallel Programming Language Nirvana

Performance

Productivity

Portability

© 2020 Codeplay Software Ltd.17

Performance Portability Productivity

OpenCL

OpenMP

CUDA

SYCL

Iron Triangle of Parallel Programming Nirvana is about making engineering tradeoffs

P
o

rta
b

ility

© 2020 Codeplay Software Ltd.18

Concurrency vs Parallelism

What makes parallel or concurrent programming harder
than serial programming? What’s the difference? How
much of this is simply a new mindset one has to adopt?

© 2020 Codeplay Software Ltd.19

Which one to choose?

© 2020 Codeplay Software Ltd.20

© 2020 Codeplay Software Ltd.21

CPU GPUAccelerator

FPGAAPUDSP

Heterogeneous Devices

© 2020 Codeplay Software Ltd.22

Hot Chips

© 2020 Codeplay Software Ltd.23

• Shared Memory
Multiprocessor (SMP)
• Shared memory address

space
• Bus-based memory system

• Interconnection network

Fundamental Parallel Architecture Types

• Uniprocessor
• Scalar processor

• Single Instruction
Multiple Data (SIMD)

• Single Instruction
Multiple Thread (SIMT)

processor

memory

processor processor

memory

bus

processor processor

memory

network

…

…

…

processor

memory

…

23

© 2020 Codeplay Software Ltd.24

SIMD vs SIMT

© 2020 Codeplay Software Ltd.25

Distributed and network Parallel Architecture Types

• Distributed Memory
Multiprocessor

• Message passing
between nodes

• Massively Parallel Processor
(MPP)
• Many, many processors

• Cluster of SMPs
• Shared memory

addressing within SMP
node

• Message passing between
SMP nodes

• Can also be regarded as
MPP if processor number
is large

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

… …

… …
…

…

interconnection network

MM

MM

PP P P

PPPP

…

…

network
interface

25

Introduction to Parallel

Computing, University of

Oregon, IPCC

© 2020 Codeplay Software Ltd.26

Modern Parallel Architecture
• Heterogeneous: CPU+Manycore CPU

• Heterogeneous: Multicore SMP+GPU Cluster

 Multicore Manycore

 Manycore vs Multicore CPU

 Heterogeneous: CPU + GPU

 Heterogeneous: “Fused” CPU + GPU

memory

C C C C
m m m m

processor

memory

PCI

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

processor

memory

cores can be
hardware
multithreaded
(hyperthread)

26

… …

… …

…

…

interconnection network

M

M

PP P P

PPPP

network
interface

M

M

memory

C C C C
m m m m

C C C C
m m m m

C C C C
m m m m

C C C C
m m m m

© 2020 Codeplay Software Ltd.27

Modern Parallel Programming model
• Heterogeneous: CPU+Manycore CPU: OpenCL, OpenMP, SYCL,

C++11/14/17/20, TBB, Cilk, pthread

• Heterogeneous: Multicore SMP+GPU Cluster: OpenCL, OpenMP, SYCL, C++17/20

 Multicore Manycore
 Manycore vs Multicore CPU: OpenCL, OpenMP, SYCL,

C++11/14/17/20, TBB, Cilk, pthread

 Heterogeneous: CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20,
OpenACC, CUDA, hip, RocM, C++ AMP, Intrinsics, OpenGL, Vulkan,
CUDA, DirectX

 Heterogeneous: “Fused” CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20, hip,
RocM, Intrinsics, OpenGL, Vulkan, DirectX

memory

C C C C
m m m m

processor

memory

PCI

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

processor

memory

cores can be
hardware
multithreaded
(hyperthread)

27

… …

… …

…

…

interconnection network

M

M

PP P P

PPPP

network
interface

M

M

memory

C C C C
m m m m

C C C C
m m m m

C C C C
m m m m

C C C C
m m m m

© 2020 Codeplay Software Ltd.28

Which Programming model works on all the Architectures?Is there a pattern?

• Heterogeneous: CPU+Manycore CPU: OpenCL, OpenMP, SYCL,
C++11/14/17/20, TBB, Cilk, pthread

• Heterogeneous: Multicore SMP+GPU Cluster: OpenCL, OpenMP, SYCL, C++17/20

 Multicore Manycore
 Manycore vs Multicore CPU: OpenCL, OpenMP, SYCL,

C++11/14/17/20, TBB, Cilk, pthread

 Heterogeneous: CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20,
OpenACC, CUDA, hip, RocM, C++ AMP, Intrinsics, OpenGL, Vulkan,
CUDA, DirectX

 Heterogeneous: “Fused” CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20, hip,
RocM, Intrinsics, OpenGL, Vulkan, DirectX

memory

C C C C
m m m m

processor

memory

PCI

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

processor

memory

cores can be
hardware
multithreaded
(hyperthread)

28

… …

… …

…

…

interconnection network

M

M

PP P P

PPPP

network
interface

M

M

memory

C C C C
m m m m

C C C C
m m m m

C C C C
m m m m

C C C C
m m m m

© 2020 Codeplay Software Ltd.29

To support all the different parallel architectures

• With a single source
code base

• And if you also want it
to be an International
Open Specification

• And if you want it to be
growing with the
architectures

• You really only have a
few choices

© 2020 Codeplay Software Ltd.30

Act 2

The four horsemen of heterogeneous programming

© 2020 Codeplay Software Ltd.31

Simon Mcintosh-Smith annual language citations

© 2020 Codeplay Software Ltd.32

The Reality

Performance

PortabilityProductivity

© 2020 Codeplay Software Ltd.33

Long Answer

➢ The right programming model can allow you to express a
problem in a way which adapts to different architectures

Yes

© 2020 Codeplay Software Ltd.34

Use the right abstraction now
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async

Vectors Parallelism TS2

Atomic, Fences, lockfree, futures, counters,

transactions

C++11/14/17 atomics, Concurrency TS1,

Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel

algorithms, for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja,

CUDA

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa OpenMP/ACC?

TLS ?

Exception handling in concurrent environment ?

© 2020 Codeplay Software Ltd.35

The Four Horsemen

Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

0 4 1 5 2 6 3 7

© 2020 Codeplay Software Ltd.36

Cost of Data Movement

• 64bit DP Op:
• 20pJ

• 4x64bit register read:
• 50pJ

• 4x64bit move 1mm:
• 26pJ

• 4x64bit move 40mm:
• 1nJ

• 4x64bit move DRAM:
• 16nJCredit: Bill Dally, Nvidia,

2010

© 2020 Codeplay Software Ltd.37

Implicit vs Explicit Data Movement

array_view<float> ptr;

extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx)

restrict(amp) {

ptr[idx] *= 2.0f;

});

Here we’re using OpenMP as an

example

float *h_a = { … }, d_a;

cudaMalloc((void **)&d_a, size);

cudaMemcpy(d_a, h_a, size,

cudaMemcpyHostToDevice);

vec_add<<<64, 64>>>(a, b, c);

cudaMemcpy(d_a, h_a, size,

cudaMemcpyDeviceToHost);

Examples:
• OpenCL, CUDA, OpenMP

Implementation:
• Data is moved to the device via

explicit copy APIs

Here we’re using C++ AMP as an

example

Examples:
• SYCL, C++ AMP

Implementation:
• Data is moved to the device

implicitly via cross host CPU /
device data structures

Here we’re using CUDA as an

example

© 2020 Codeplay Software Ltd.38

Row-major vs column-major

int x = globalId[0];
int y = globalId[1];
int stride = 4;

out[(x * stride) + y] =
in[(y * stride) + x];

© 2020 Codeplay Software Ltd.39

AoS vs SoA

struct str {

float f[N];

int i[N];

};

str s;

… = s.f[globalId];

… = s.i[globalId];

f f f f f f f f i i i i i i i i

2x load operations

© 2020 Codeplay Software Ltd.40

Socket 0 Socket 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Core 0 Core 1 Core 0 Core 1

0 1 2 3 4 5 6 7

{

auto exec = execution::execution_context{execRes}.executor();

auto affExec = execution::require(exec, execution::bulk,

execution::bulk_execution_affinity.compact);

affExec.bulk_execute([](std::size_t i, shared s) {

func(i);

}, 8, sharedFactory);

}

© 2020 Codeplay Software Ltd.41

Package

Numa 0 Numa 1

Core 0 Core 2Core 1 Core 3

this_system::get_resources()

Place where std::thread executes GPU
System-level

resources

Processing Elements

Work Groups

relativeLatency = affinity_query<read, latency>(core2, numa0) > affinity_query<read, latency>(core3, numa0)

© 2020 Codeplay Software Ltd.42

Act 3

C++, OpenCL, OpenMP, SYCL

© 2020 Codeplay Software Ltd.43

© 2020 Codeplay Software Ltd.44

Example: SAXPY

single-precision a times x plus y vector addition

y = αx + y

© 2020 Codeplay Software Ltd.45

45

Serial SAXPY Implementation
Introduction to Parallel Computing, University of Oregon, IPCC

© 2020 Codeplay Software Ltd.46

The Quiet Revolution

Kokkos

HPX

Raja

Boost.Compute

OpenCL

OpenMP

SYCL

CUDA

© 2020 Codeplay Software Ltd.47

Parallel/concurrency before C++11 (C++98)
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs,

accelerators, FPGA,

embedded AI processors)

summary tasks that run

independently and

communicate via

messages

operations on groups of

things, exploit parallelism

in data and algorithm

structures

avoid races and

synchronizing objects in

shared memory

Dispatch/offload to other

nodes (including

distributed)

examples GUI,background printing,

disk/net access

trees, quicksorts,

compilation

locked data(99%), lock-

free libraries (wizards),

atomics (experts)

Pipelines, reactive

programming, offload,,

target, dispatch

key metrics responsiveness throughput, many core

scalability

race free, lock free Independent forward

progress,, load-shared

requirement isolation, messages low overhead composability Distributed, heterogeneous

today's abstractions POSIX threads, win32

threads, OpenCL, vendor

intrinsic

openmp, TBB, PPL,

OpenCL, vendor intrinsic

locks, lock hierarchies,

vendor atomic instructions,

vendor intrinsic

OpenCL, CUDA

© 2020 Codeplay Software Ltd.48

Parallel/concurrency after C++11
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs,

accelerators, FPGA,

embedded AI processors)

summary tasks that run independently and

communicate via messages

operations on groups of

things, exploit parallelism

in data and algorithm

structures

avoid races and

synchronizing objects in

shared memory

Dispatch/offload to other

nodes (including distributed)

examples GUI,background printing,

disk/net access

trees, quicksorts,

compilation

locked data(99%), lock-free

libraries (wizards), atomics

(experts)

Pipelines, reactive

programming, offload,,

target, dispatch

key metrics responsiveness throughput, many core

scalability

race free, lock free Independent forward

progress,, load-shared

requirement isolation, messages low overhead composability Distributed, heterogeneous

today's abstractions C++11: thread,lambda function,

TLS, Async

C++11: Async, packaged

tasks, promises, futures,

atomics

C++11: locks, memory

model, mutex, condition

variable, atomics, static

init/term

C++11: lambda

© 2020 Codeplay Software Ltd.49

Parallel/concurrency after C++14
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous

summary tasks that run independently

and communicate via

messages

operations on groups of

things, exploit parallelism in

data and algorithm

structures

avoid races and

synchronizing objects in

shared memory

Dispatch/offload to other

nodes (including distributed)

examples GUI,background printing,

disk/net access

trees, quicksorts, compilation locked data(99%), lock-free

libraries (wizards), atomics

(experts)

Pipelines, reactive

programming, offload,,

target, dispatch

key metrics responsiveness throughput, many core

scalability

race free, lock free Independent forward

progress,, load-shared

requirement isolation, messages low overhead composability Distributed, heterogeneous

today's abstractions C++11: thread,lambda

function, TLS, async

C++14: generic lambda

C++11: Async, packaged

tasks, promises, futures,

atomics,

C++11: locks, memory

model, mutex, condition

variable, atomics, static

init/term,

C++ 14:

shared_lock/shared_timed_

mutex, OOTA,

atomic_signal_fence,

C++11: lambda

C++14: none

© 2020 Codeplay Software Ltd.50

Parallel/concurrency after C++17
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs, accelerators,

FPGA, embedded AI processors)

summary tasks that run independently and

communicate via messages

operations on groups

of things, exploit

parallelism in data and

algorithm structures

avoid races and

synchronizing objects

in shared memory

Dispatch/offload to other nodes (including

distributed)

today's abstractions C++11: thread,lambda function, TLS,

async

C++14: generic lambda

C++11: Async,

packaged tasks,

promises, futures,

atomics,

C++ 17: ParallelSTL,

control false sharing

C++11: locks, memory

model, mutex,

condition variable,

atomics, static

init/term,

C++ 14:

shared_lock/shared_ti

med_mutex, OOTA,

atomic_signal_fence,

C++ 17: scoped _lock,

shared_mutex,

ordering of memory

models, progress

guarantees, TOE,

execution policies

C++11: lambda

C++14: generic lambda

C++17: progress guarantees, TOE,

execution policies

© 2020 Codeplay Software Ltd.51

• Saxpy == Scalar Alpha X Plus Y

– Scalar multiplication and vector addition

5
1

Example: saxpyx

y

z

for (int i=0; i<n; i++)
z[i] = a * x[i] + y[i];

int start = …;
int end = …;

for (int t=0; t<NumThreads; t++)
{

thread(
[&z,x,y,a,start,end]() -> void
{

for (int i = start; i < end; i++)
z[i] = a * x[i] + y[i];

}
);

start += …;
end += …;

}

Parallel

© 2020 Codeplay Software Ltd.53

•Matrix multiply…

Demo #3: a complete example

Going Parallel with C++11

© 2020 Codeplay Software Ltd.54

5
4

Sequential version…

//

// Naïve, triply-nested sequential solution:

//

for (int i = 0; i < N; i++)

{

for (int j = 0; j < N; j++)

{

C[i][j] = 0.0;

for (int k = 0; k < N; k++)

C[i][j] += (A[i][k] * B[k][j]);

}

}

© 2020 Codeplay Software Ltd.55

• A common pattern when creating multiple
threads

5
5

Structured ("fork-join") parallelism

fork

join

Sequentia
l

Sequentia
l

Paralle
l

#include <vector>

std::vector<std::thread> threads;

int cores = std::thread::hardware_concurrency();

for (int i=0; i<cores; ++i) // 1 per core:

{
auto code = []() { DoSomeWork(); };
threads.push_back(thread(code));

}

for (std::thread& t : threads) // new range-based for:

t.join();

© 2020 Codeplay Software Ltd.56

5
6

Parallel solution
int rows = N / numthreads;
int extra = N % numthreads;
int start = 0; // each thread does [start..end)
int end = rows;

vector<thread> workers;

for (int t = 1; t <= numthreads; t++)
{

if (t == numthreads) // last thread does extra rows:
end += extra;

workers.push_back(thread([start, end, N, &C, &A, &B]()
{

for (int i = start; i < end; i++)
for (int j = 0; j < N; j++)
{

C[i][j] = 0.0;
for (int k = 0; k < N; k++)

C[i][j] += (A[i][k] * B[k][j]);
}

}));

start = end;
end = start + rows;

} for (thread& t : workers)
t.join();

// 1 thread per core:
numthreads = thread::hardware_concurrency();

© 2020 Codeplay Software Ltd.57

C++ Directions Group: P2000

© 2020 Codeplay Software Ltd.58

P2000:Modern hardware

We need better support for modern hardware, such as
executors/execution context, affinity support in C++
leading to heterogeneous/distributed computing
support, ...

© 2020 Codeplay Software Ltd.59

Parallel/concurrency aiming for C++20
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous/Distributed

today's

abstractions

C++11: thread,lambda

function, TLS, async

C++ 20: Jthreads

+interrupt _token,

coroutines

C++11: Async, packaged tasks,

promises, futures, atomics,

C++ 17: ParallelSTL, control false

sharing

C++ 20: Vec execution policy,

Algorithm un-sequenced policy,

span

C++11: locks, memory model, mutex,

condition variable, atomics, static

init/term,

C++ 14:

shared_lock/shared_timed_mutex,

OOTA, atomic_signal_fence,

C++ 17: scoped _lock, shared_mutex,

ordering of memory models, progress

guarantees, TOE, execution policies

C++20: atomic_ref, Latches and

barriers, atomic<shared_ptr>

Atomics & padding bits

Simplified atomic init

Atomic C/C++ compatibility

Semaphores and waiting

Fixed gaps in memory model ,

Improved atomic flags, Repair memory

model

C++11: lambda

C++14: generic lambda

C++17: , progress

guarantees, TOE, execution

policies

C++20: atomic_ref,, span

© 2020 Codeplay Software Ltd.60

Parallel/Concurrency beyond C++20: C++23
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous/DIstributed

today's

abstractions

C++11: thread,lambda

function, TLS, async

C++14: generic lambda

C++ 20: Jthreads +interrupt

_token

C++23: networking,

asynchronous algorithm,

reactive programming,

EALS, async2, executors

C++11: Async, packaged tasks,

promises, futures, atomics,

C++ 17: ParallelSTL, control false

sharing

C++ 20: Vec execution policy,

Algorithm un-sequenced policy

span

C++23: SMD<T>,new futures,

concurrent vector,task blocks,

unordered associative containers, two-

way executors with lazy sender-

receiver models, concurrent exception

handling, executors, mdspan

C++11: …

C++ 14: …

C++ 17: …

C++20: atomic_ref, Latches and

barriers

atomic<shared_ptr>

Atomics & padding bits

Simplified atomic init

Atomic C/C++ compatibility

Semaphores and waiting

Fixed gaps in memory model ,

Improved atomic flags , Repair

memory model

C++23: hazard_pointers,

rcu/snapshot, concurrent queues,

counters, upgrade lock, TM lite,

more lock-free data structures,

asymmetric fences

C++17: , progress

guarantees, TOE, execution

policies

C++20: atomic_ref, mdspan,

C++23: SIMD<T>,affinity,

pipelines, EALS,

freestanding/embedded

support well specified,

mapreduce, ML/AI, reactive

programming executors,

mdspan

© 2020 Codeplay Software Ltd.61

C++23: continue C++20
• Library support for coroutines

• Further Conceptifying Standard Library

• Further Range improvements (e.g., application of
ranges to parallel algorithms and operations on
containers and integration with coroutines)

• A modular standard library

© 2020 Codeplay Software Ltd.62

After C++20
• Much more libraries

• Audio
• Linear Algebra
• Graph data structures
• Tree Data structures
• Task Graphs
• Differentiation
• Reflection
• Light-weight transactional

locks
• A new future and/or a new

async
• Statistics Library
• Array style programming

through mdspan

• Machine learning support
• Executors
• Networking
• Pattern Matching
• Better support for C++Tooling

ecosystem
• Further support for

heterogeneous programming
• Graphics
• Better definition of freestanding
• Education dependency

curriculum

© 2020 Codeplay Software Ltd.63

After C++23
• Reflection

• Pattern matching

• C++ ecosystem

• What about Contracts?

© 2020 Codeplay Software Ltd.64

What have we achieved so far for
C++20?

© 2020 Codeplay Software Ltd.65

SYCL Ecosystem
● ComputeCpp -

https://codeplay.com/products/computesuite/computecpp
● triSYCL - https://github.com/triSYCL/triSYCL
● SYCL - http://sycl.tech
● SYCL ParallelSTL - https://github.com/KhronosGroup/SyclParallelSTL
● VisionCpp - https://github.com/codeplaysoftware/visioncpp
● SYCL-BLAS - https://github.com/codeplaysoftware/sycl-blas
● TensorFlow-SYCL - https://github.com/codeplaysoftware/tensorflow
● Eigen http://eigen.tuxfamily.org

https://codeplay.com/products/computesuite/computecpp
https://github.com/triSYCL/triSYCL
http://sycl.tech/
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/visioncpp
https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/tensorflow
http://eigen.tuxfamily.org/

© 2020 Codeplay Software Ltd.66

Eigen Linear Algebra Library
SYCL backend in mainline

Focused on Tensor support, providing

support for machine learning/CNNs

Equivalent coverage to CUDA

Working on optimization for various

hardware architectures (CPU, desktop and

mobile GPUs)

https://bitbucket.org/eigen/eigen/

https://bitbucket.org/eigen/eigen/

© 2020 Codeplay Software Ltd.67

TensorFlow
SYCL backend support for all major CNN

operations

Complete coverage for major image

recognition networks

GoogLeNet, Inception-v2, Inception-v3,

ResNet, ….

Ongoing work to reach 100% operator

coverage and optimization for various

hardware architectures (CPU, desktop and

mobile GPUs)

https://github.com/tensorflow/tensorflow

TensorFlow, the TensorFlow logo and any related marks are

trademarks of Google Inc.

https://github.com/tensorflow/tensorflow

© 2020 Codeplay Software Ltd.68

SYCL Ecosystem
• Single-source heterogeneous programming using STANDARD C++

- Use C++ templates and lambda functions for host & device code

- Layered over OpenCL

• Fast and powerful path for bring C++ apps and libraries to OpenCL

- C++ Kernel Fusion - better performance on complex software than hand-coding

- Halide, Eigen, Boost.Compute, SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL GTX

- Clang, triSYCL, ComputeCpp, VisionCpp, ComputeCpp SDK …

• More information at http://sycl.tech

C++ Kernel Language
Low Level Control

‘GPGPU’-style separation of

device-side kernel source

code and host code

Single-source C++
Programmer Familiarity

Approach also taken by

C++ AMP and OpenMP

Developer Choice
The development of the two specifications are aligned so
code can be easily shared between the two approaches

http://sycl.tech/

© 2020 Codeplay Software Ltd.69

Codeplay
Standards

bodies
• HSA Foundation: Chair of

software group, spec editor of
runtime and debugging

• Khronos: chair & spec editor of
SYCL. Contributors to OpenCL,
Safety Critical, Vulkan

• ISO C++: Chair of Low Latency,
Embedded WG; Editor of SG1
Concurrency TS

• EEMBC: members

Research

• Members of EU research
consortiums: PEPPHER,
LPGPU, LPGPU2, CARP

• Sponsorship of PhDs and EngDs
for heterogeneous programming:
HSA, FPGAs, ray-tracing

• Collaborations with academics

• Members of HiPEAC

Open
source

• HSA LLDB Debugger

• SPIR-V tools

• RenderScript debugger in AOSP

• LLDB for Qualcomm Hexagon

• TensorFlow for OpenCL

• C++ 17 Parallel STL for SYCL

• VisionCpp: C++ performance-
portable programming model for
vision

Presentati
ons

• Building an LLVM back-end

• Creating an SPMD Vectorizer for
OpenCL with LLVM

• Challenges of Mixed-Width
Vector Code Gen & Scheduling
in LLVM

• C++ on Accelerators: Supporting
Single-Source SYCL and HSA

• LLDB Tutorial: Adding debugger
support for your target

Company

• Based in Edinburgh, Scotland

• 57 staff, mostly engineering

• License and customize
technologies for semiconductor
companies

• ComputeAorta and
ComputeCpp: implementations
of OpenCL, Vulkan and SYCL

• 15+ years of experience in
heterogeneous systems tools

Codeplay build the software platforms that deliver massive performance

© 2020 Codeplay Software Ltd.70

What our ComputeCpp users say about us

“We at Google have been working
closely with Luke and his Codeplay
colleagues on this project for almost

12 months now. Codeplay's
contribution to this effort has been

tremendous, so we felt that we should
let them take the lead when it comes

down to communicating updates
related to OpenCL. … we are

planning to merge the work that has
been done so far… we want to put

together a comprehensive test
infrastructure”

Benoit Steiner – Google
TensorFlow engineer

“We work with royalty-free SYCL
because it is hardware vendor
agnostic, single-source C++

programming model without platform
specific keywords. This will allow us to

easily work with any heterogeneous
processor solutions using OpenCL to
develop our complex algorithms and

ensure future compatibility”

ONERA

“My team and I are working with
Codeplay's ComputeCpp for almost a

year now and they have resolved
every issue in a timely manner, while

demonstrating that this technology can
work with the most complex C++

template code. I am happy to say that
the combination of Codeplay's SYCL
implementation with our HPX runtime

system has turned out to be a very
capable basis for Building a

Heterogeneous Computing Model for
the C++ Standard using high-level

abstractions.”

Hartmut Kaiser - HPX

It was a great pleasure this week for
us, that Codeplay released the

ComputeCpp project for the wider
audience. We've been waiting for this
moment and keeping our colleagues

and students in constant rally and
excitement. We'd like to build on this

opportunity to increase the awareness
of this technology by providing sample

codes and talks to potential users.
We're going to give a lecture series on

modern scientific programming
providing field specific examples.“

WIGNER Research Centre

for Physics

© 2020 Codeplay Software Ltd.71

Further information

• OpenCL https://www.khronos.org/opencl/

• OpenVX
https://www.khronos.org/openvx/

• HSA http://www.hsafoundation.com/

• SYCL http://sycl.tech

• OpenCV http://opencv.org/

• Halide http://halide-lang.org/

• VisionCpp https://github.com/codeplaysoftware/visioncpp

https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
http://www.hsafoundation.com/
http://sycl.tech/
http://opencv.org/
http://halide-lang.org/
https://github.com/codeplaysoftware/visioncpp

© 2020 Codeplay Software Ltd.72

Community Edition

Available now for free!

Visit:

computecpp.codeplay.com

© 2020 Codeplay Software Ltd.73

• Open source SYCL projects:
• ComputeCpp SDK - Collection of sample code and integration tools

• SYCL ParallelSTL – SYCL based implementation of the parallel algorithms

• VisionCpp – Compile-time embedded DSL for image processing

• Eigen C++ Template Library – Compile-time library for machine learning

All of this and more at: http://sycl.tech

http://sycl.tech/

@codeplaysoft codeplay.com
info@codeplay.co

m

Thanks

