® codeplay’

The landscape of Parallel Programing Models
Part 2:
The importance of Data

Michael Wong and Rod Burns

Codeplay Software Ltd.
Distiguished Engineer, Vice President of Ecosystem

IXPUG 2020

Products

““Acoran

Integrates all the industry
standard technologies needed
to supportavery wide range
of Al and HPC

A ComputeAorta

The heart of Codeplay's
compute technology enabling
OpenCL™, SPIR-V™, HSA™ and
Vulkan™

Company

Leaders in enabling high-performance
software solutions for new Al processing

systems

Enabling the toughest processors with tools
and middleware based on open standards

C ComputeCpp

C++ platform via the SYCL™
open standard, enabling vision
& machine learning e.g.
TensorFlow™

k

4

Enabling Al & HPC "/
to be Open, Safe &
Accessible to All

® codeplay’

Established 2002 in Scotland with ~80

employees

® codeplay’

Markets

High Performance Compute (HPC)
Automotive ADAS, loT, Cloud Compute
Smartphones & Tablets

Medical & Industrial

Technologies: Artificial Intelligence
Vision Processing
Machine Learning
Big Data Compute

Customers

arm sebew CEVA

Q7 imagination (i@ RENESAS

SYNnoprsys And many more!

© 2020 Codeplay Software Ltd.

Distinguished Engineer Michael Wong

° Chair of SYCL Heterogeneous Programming Language
C++ Directions Group

ISOCPP.org Director, VP
http://isocpp.org/wiki/fag/wg21#michael-wong
michael@codeplay.com

fraggamuffin@gmail.com

Head of Delegation for C++ Standard for Canada

Ported

TensorFlow to BuildLLy

Chair of Programming Languages for Standards open based

standards

Council of Canada compilers for

Chair of WG21 SG19 Machine Learning using SYC accelerators

Chair of WG21 SG14 Games Dev/Low
Latency/Financial Trading/Embedded ing

° Editor: C++ SG5 Transactional Memory Technical source, open-
Specification standard§ based Al

° Editor: C++ SG1 Concurrency Technical Specification sif;ief&_ﬁ,'°§‘vé‘i°,'jL

° MISRA C++ and AUTOSAR VisionCpp

° Chair of Standards Council Canada TC22/SC32
Electrical and electronic components (SOTIF)

° Chair of UL4600 Object Tracking

° http://wongmichael.com/about

° C++11 book in Chinese:
https://www.amazon.cn/dp/BOOETOV20Q

We build GPU compilers for semiconductor companies
Now working to make Al/ML heterogeneous acceleration safe for
autonomous vehicle

® codeplay’ © 2020 Codeplay Software Ltd.

http://isocpp.org/wiki/faq/wg21
mailto:michael@codeplay.com
mailto:fraggamuffin@gmail.com
http://wongmichael.com/about

n:
O:
>
0
(a4

- -
e

Acknowledgement and Disclaimer

THIS WORK REPRESENTS THE
VIEW OF THE AUTHOR AND DOES
NOT NECESSARILY REPRESENT
THE VIEW OF CODEPLAY.

® codeplay’

OTHER COMPANY, PRODUCT, AND
SERVICE NAMES MAY BE
TRADEMARKS OR SERVICE MARKS
OF OTHERS.

Numerous people internal and external
to the original C++/Khronos group, in
industry and academia, have made
contributions, influenced ideas, written
part of this presentations, and offered
feedbacks to form part of this talk.

But | claim all credit for errors, and stupid mistakes. These
are mine, all mine! You can’t have them.

© 2020 Codeplay Software Ltd.

Legal Disclaimer

THIS WORK REPRESENTS THE VIEW OF THE OTHER COMPANY, PRODUCT, AND SERVICE
AUTHOR AND DOES NOT NECESSARILY NAMES MAY BE TRADEMARKS OR SERVICE
REPRESENT THE VIEW OF CODEPLAY. MARKS OF OTHERS.

® codeplay’ © 2020 Codeplay Software Ltd.

Disclaimers

NVIDIA, the NVIDIA logo and CUDA are trademarks and/or
registered trademarks of NVIDIA Corporation in the U.S.
and/or other countries

Codeplay is not associated with NVIDIA for this work and it is
purely using public documentation and widely available code

® codeplay” © 2020 Codeplay Software Ltd.

3 Act Play

1. Parallel Heterogeneous
Programming Model
comparison

2. OpenMP Accelerator and OpenMP

Data Movement

Intel
Product

Industry
Initiative

3. SYCL Data Movement:
Accessors and USM

® codeplay’ © 2020 Codeplay Software Ltd.

Act 1

Comparison of Parallel Heterogeneous Programming Models

Intel
Product

Industry
Initiative

oneAPI

Application Workloads Need Diverse Hardware

Programming Challenges

for Multiple Architectures m W

Vector Matrix Spatial

Growth in specialized workloads Middleware / Frameworks
No common programming language or APIs
Inconsistent tool support across platforms Languages & Libraries

Each platform requires unique software
investment

Diverse set of data-centric hardware required

) © 2020 Codeplay Software Ltd.

| ntrod u Ci n g oneAPI Application Workloads Need Diverse Hardware

L

Vect Matri Spatial
Unified programming model to simplify seor e patia

development across diverse architectures

Unified and simplified Iangua?‘e and Middleware / Frameworks
libraries for expressing parallelism

Uncompromised native high-level language
performance

Based on industry standards and open
specifications

Industry Intel
Initiative Product
Interoperable with existing HPC oneAPI
programming models

0 © 2020 Codeplay Software Ltd,

Vision for oneAPI Industry Initiative

A top-to-bottom ecosystem around oneAPI specification
oneAPI Specification
oneAPIl Open Source Projects
oneAPI Commercial Products

Applications powered by oneAPI

® codeplay”

© 2020 Codeplay Software Ltd.

Application Workloads

oneAPI Industry Initiative

Middleware / Frameworks

oneAPI Industry Specification

oneAPI Industry Specification Direct Programming API-Based Programming

® A standards based cross-architecture language,

DPC++, based on C++ and SYCL

® Powerful APIs designed for acceleration of key
domain-specific functions
® Low-level hardware interface to provide a
hardware abstraction layer to vendors
) :
Enables code reuse across architectures and vendors
°

Open standard to promote community and
industry support

—Technical Advisory Board
—oneAPI Industry Brand

Visit oneapi.com for more details
@9 2020 Codeplay Software Ltd.

1

oneapi.com

oneAPI Specification Feedback Process

O Intreduction

Introduction

Target Audience oneAPI is an open, free, and standards-based programming system that provides portability across

- . . platforms with different accelerators and across different generations of hardware. oneAPI provides
N To promote compatibility and enable developer productivity and LA e S the potential to achieve full platform performance with minimal platform-specific tuning, oneAPI
m“ innovation, the oneAPI specification builds upon industry standards and Definitions consists of nine elements:
[bring a complete open cross platform developer stack. Supersets and subsets
O‘“‘E Contributing 1. oneAPI Data Paralle] C++ (DPC++): C++ with data parallel programming model

N

A P I w - . oneAPI Data Parallel C++ Library (oneDPC): DPC++ library that extends STL for parallelism

. oneAPI| Deep Neural Network Library (oneDNN): Library of optimized building blocks for deep

w

Software Architecture

learning
Library Interoperability 4. oneAPI Collective Communications Library (oneCCL): Efficient implementation of
oneAPl Elements communications patterns for deep learning
5. Accelerator Abstraction Layer (AAL): System interface for oneAPI languages and libraries

DPC++: Data Parallel C++

6

oneAPI Data Analytics Library (oneDAL): Optimized algorithmic building blocks for data
oneDPC: Data Parallel C++ library

Feedback Process: oneAP| Specification Is Available For Your Input) analysis
oneDNN: Deep Learning Math Library 7. oneAPI Threading Building Blocks (oneTBBY): Library for parallel programming and
¥ ported across architectures has been a barrier to innovation, and has kept developers from taking oneCCL: Collective Communications heterogeneous computing
Library 8. oneAPI Video Processing Library (oneVPL): Algorithms for video processing

stem to create a shared industry spec that gives developers the power and flexibility

o

oneAAL: Accelerator Abstraction Layer . oneAP| Math Kernel Library (oneMKL): Library of optimized math routeins for science,

loneDAL: Data Analytics Librany engineering and financial applications

oneapi-src / oneapi-spec ©Unwatche 12 dkUnstar 26 YFork 11 e s e Many modern applications are data parallel: they process tremendous amounts of data, performing
oneVPL: Video Processing Library similar computations on each data element. Data parallel applications include Al, machine learning,

ests 0 hction: Projects 0 Wik ecurity nsight oneM b data analytics, visual computing, and scientific computing. Data parallel applications can be

Authors accelerated with parallel hardware and a programming system, such as oneAPI, that allows the

programmer to express parallelism

spec.oneapi.com

<85 i b3 %10 packa 1rel 4210 contribu
master = New pull request Create new file | Upload files Findfile SN By
B scohn2 . # v Sec7b10

We encourage feedback on the oneAPI
Specification from organizations and individuals

- sl version of K-Means 5p © 2020 Codeplay Software Ltd.

Data parallel C++

Standards-based, Cross-architecture Language

Language to deliver uncompromised parallel programming
productivity and performance across CPUs and accelerators
DPC++ = ISO C++ and Khronos SYCL and Extensions
Allows code reuse across hardware targets, while permitting
custom tuning for a specific accelerator
Open, cross-industry alternative to single architecture proprietary
ETale[VELe[2

Based on C++
Delivers C++ productivity benefits, using common and familiar C
and C++ constructs

Incorporates SYCL* from the Khronos Group to support data
parallelism and heterogeneous programming

Community Project to drive language enhancements
Extensions to simplify data parallel programming
Open and cooperative development for continued evolution
DPC++ extensions including Unified Shared Memory are being
incorporated into upcoming versions of the Khronos SYCL
standard.

Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding performance and optimization
choices in Intel software products.

oneAPI Industry Specification

Low Level Hardware Interface

Direct Programming:
Data Parallel C++

Community Extensions

Khronos SYCL

ISO C++

© 2020 Codeplay Software Ltd.

oneAPI Industry Specification

Low Level Hardware Interface

oneAPI Specification

Li b ra ri es Library Name Description Short name
oneAPI DPC++ Library Key algorithms and functions to speed oneDPC
up DPC++ kernel programming
oneAPI Math Kernel Math routines including matrix algebra, oneMKL
Key domam-speaﬂc functions to accelerate Library fast Fourier transforms (FFT), and vector

. . math
compute intensive workloads
oneAP| Data Analytics Machine learning and data analytics oneDAL

Library functions
Custom-coded for supported architectures oneAPI Deep Neural Neural networks functions for deep oneDNN
Network Library learning training and inference

oneAPI Collective Communication patterns for oneCCL
Communications Library distributed deep learning

oneAP| Threading Threading and memory management oneTBB
Building Blocks template library

oneAPI Video Processing Real-time video decoding, encoding, oneVPL
Library transcoding, and processing functions

5 © 2020 Codeplay Software Ltd.

oneAPI Level Zero

Hardware abstraction layer for low-level low-
latency accelerator programming control

Target: Hardware and OS vendors who would

like to implement oneAPI specification; as well
as runtime developers for other languages

* Current version supports GPU

oneAPI Industry Specification

Language Libraries
Low Level Hardware Interface

Optimized Middleware & Frameworks

Direct Programming API-based Programming

Language Libraries

Host Interface Low Level Hardware Interface

CPU GPU* Al FPGA

Scalar Vector Matrix Spatial

© 2020 Codeplay Software Ltd.

allegro.ai CINECA 7/, GIGASPACES SAPZ TabQCla

. — s
’;g&}af,}./f” Al SINGAPORE Hewlett Packard Lenovo Tencent i&ifl TENIAC
Enterprise

=¥1. CERN ~
Argonne & A4 openlab © codeplay MEGWARE

Laboratério
. Nacional de 3
Computacdo M M
Cientifica
IISER PUNE renties

Federagéio das Indiistrias do Estado da Bahia S U S E
W adapt. You suc

m C 2 El.,' MEGH Tech
Indian Institute of COMPUTING

1 UNIVERSITY OF
Mahindra CAMBRIDGE
Technology Delhi

ATLAS

EXPERIMENT

So3 3Ny

Ben-Gurion University
of the Negev

K30 FKTHE
Stockholm @&:‘(L‘:z::: &f

University el

These organizations support the oneAP! initiative ‘concept’ for a single, unified

programming

model for cross-architecture development. It does not indicate any agreement to purchase or use of Intel’s

R v AR t\vare Ltd.

Upcoming relevant DPC++ and SYCL talks

Date Start Time

Wed 14th: 11:30

Thurs 15t: 12:30

Thurs 15th: 14:15

Friday 16t

Monday 19t

End Time

12:00

14:00

15:15

Title

SYCL Performance and Portability

Tutorials: OneAPIl/ DPC++ Essential Series hands on (Through Friday)
oneAPI Intro Module: (This module is used to introduce oneAPI, DPC++
Hello World and Intel DevCloud)

DPC++ Program Structure: (Classes - device, device_selector, queue, basic
kernels and ND-Range kernels, Buffers-Accessor memory model, DPC++
Code Anatomy)

Tutorial: DPC++ New Features - Unified Shared Memory (USM), Sub-
Groups (Intel oneAPI DPC++ Library -Usage of oneDPL, Buffer Iterators and
oneDPL with USM)

Full afternoon of tutorial sessions on developing with SYCL using DPC++
including how to run this code on Nvidia hardware

BYOC — Bring your own code along to this Intel workshop and work to bring it
to oneAPI and DPC++.

Presenter

Kumudha
Narasimhan

Praveen
Kundurthy

Praveen
Kundurthy

I —— ———————

® codeplay” © 2020 Codeplay Software Ltd.

Describing Parallelism

#® codeplay’ © 2016 Codeplay Software Ltd.

How do you represent the different forms of parallelism?
» Directive vs explicit parallelism
» Task vs data parallelism

> Queue vs stream execution

® codeplay” © 2020 Codeplay Software Ltd.

Directive vs Explicit Parallelism

Examples:
* OpenMP, OpenACC

Implementation:

e Compiler transforms code to
be parallel based on pragmas

Examples:
* SYCL, CUDA, TBB, Fibers, C++11
Threads

Implementation:

* An APl is used to explicitly
enqueuer one or more threads

Here we’re using OpenMP as an example

vector<float> a, b, c;

#pragma omp parallel for
for(int 1 = 0; i < a.size(); i++) {
c[i] = al[i] + bli];

}

Here we’re using C++ AMP as an example

array view<float> a, b, c;
extent<2> e (64, 64);

parallel for each (e, [=] (index<2> 1dx)
restrict (amp) {
cl[idx] = a[idx] + blidx];

1)

® codeplay”

© 2020 Codeplay Software Ltd.

Task vs Data Parallelism

Examples: Examples:
* OpenMP, C++11 Threads, TBB * C++ AMP, CUDA, SYCL, C++17
ParallelSTL

Implementation:

* Multiple (potentially different)
tasks are performed in parallel

Implementation:

* The same task is performed
across a large data set

Here we’re using TBB as an example Here we’re using CUDA as an example
vector<task> tasks = { .. }; float *a, *b, *c;
cudaMalloc ((void **) &a, size);
tbb::parallel for each(tasks.begin(), cudaMalloc ((void **) &b, size);
tasks.end (), [=](task &v) { cudaMalloc ((void **)&c, size);
task () ;
) vec add<<<64, 64>>>(a, b, c);

® codeplay” © 2020 Codeplay Software Ltd.

Queue vs Stream Execution

Examples:
« C++ AMP, CUDA, SYCL, C++17
ParallelSTL

Implementation:

* Functions are placed in a
gueue and executed once per
enqueuer

Examples:
e BOINC, BrookGPU

Implementation:

* Afunctionis executed on a
continuous loop on a stream of
data

Here we’re using CUDA as an example

float *a, *b, *c;

cudaMalloc ((void **) &a, size);
cudaMalloc ((void **) &b, size);
cudaMalloc ((void **)&c, size);

vec_ add<<<64, 64>>>(a, b, c);

Here we’re using BrookGPU as an example

reduce void sum (float a<>,
reduce float r<>) {
r += ay;
}
float a<100>;
float r;
sum(a,r);

® codeplay”

© 2020 Codeplay Software Ltd.

Data Locality & Movement

#® codeplay’ © 2016 Codeplay Software Ltd.

One of the biggest limiting factor in parallel and
heterogeneous computing

» Cost of data movement in time and power consumption

® codeplay” © 2020 Codeplay Software Ltd.

Cost of Data Movement

|t can take considerable time to move data to a device
*This varies greatly depending on the architecture

*The bandwidth of a device can impose bottlenecks
*This reduces the amount of throughput you have on the device

*Performance gain from computation > cost of moving data
*If the gain is less than the cost of moving the data it’s not worth doing

*Many devices have a hierarchy of memory regions
*Global, read-only, group, private
*Each region has different size, affinity and access latency
*Having the data as close to the computation as possible reduces the cost

® codeplay” © 2020 Codeplay Software Ltd.

https://www.youtube.com/watch?v=dCdOal 3asx8&inde
x=18&list=PL_R5A0IGi1AA4Lv2bBFSwhgDaHvvpVU21

How do you move data from the host CPU to a device and
back?

LLVM

DEVELOPERS' MEETING
San Jose. California » 2015 «

MICHAEL WONG
ALEXEY BATAEV
OpenMP

GPU/Accelerators
Coming of Age in Clang

2015 LLVM Developers’ Meeting: M. Wong & A. Bataev "OpenMP GPU/Accelerator support..”

® codeplay’ g Lo e

LLVM

DEVELOPERS® MEETING
ATOR e '.-ﬂ/."',‘!‘.'l'u' « 2015 »

Loer Py
snsiiien)
Ly

Mot cusstione &
Ta
ot

SMmpanam

MICHAEL WONG
ALEXEY BATAEV

OpenMP
GPU/Accelerators
Coming of Age in Clang

N www.LLVM.org

® codeplay”

eary

1get agnos
CMponem

¥

Targwt AF

F it binarly
b L‘" LALE S g

.
.

-

Qeiis e

Ifury

© 2020 Codeplay Software Ltd.

Implicit vs Explicit Data Movement

Examples:
e SYCL, C++ AMP

Implementation:

e Datais moved to the device
implicitly via cross host CPU /
device data structures

Examples:
* OpenCL, CUDA, OpenMP

Implementation:

e Datais moved to the device
via explicit copy APlIs

Here we’re using C++ AMP as an example

array view<float> ptr;

extent<2> e (64, 64);
parallel for each (e, [=] (index<2> idx)
restrict (amp) {

ptridx] *= 2.0f;

1)

Here we’re using CUDA as an example

float *h a = { .. }, d a;

cudaMalloc ((void **)&d a, size);

cudaMemcpy (d a, h a, size,
cudaMemcpyHostToDevice) ;

vec add<<<e64, 64>>>(a, b, c);

cudaMemcpy (d_a, h a, size,
cudaMemcpyDeviceToHost) ;

® codeplay”

© 2020 Codeplay Software Ltd.

Act 2

OpenMP Accelerator and Data Movement
(WARNING: this is OpenMP 4, latest OpenMP will have new
additions and changes)

OpenMIP

® codeplay” © 2020 Codeplay Software Ltd.

Device Model

* One host
* Multiple accelerators/coprocessors

Coprocessors

® codeplay’ © 2020 Codeplay Software Ltd.

OpenCL Platform Model

Processing ‘n o : L hr Hﬁ]H /
ement RNl Host
i

Compute Unit OpenCL Device

* One Host and one or more OpenCL Devices

> — Each OpenCL Device is composed of one or more
O: Compute Units

ot » Each Compute Unit is divided into one or more Processing Elements
O * Memory divided into host memory and device memory
(a4
- -

! ® codeplay” © 2020 Codeplay Software Ltd.

OpenCL and OpenMP Platform Model

Processing =
[

Element \ - _H/i Host

S | ’ Target
P
Compute Unit OpenCL Device construct to

Parallel for simd v getontoa
to run on device

- processing Teams construct to create a

Z elements + vector |eague of teams with one team of
Og units threads on each compute unit.

(G

Distribute clause to assign

O work-groups to teams.
(a4
- -

! ® codeplay” © 2020 Codeplay Software Ltd.

OpenMP SAXPY Implementation for CPU

1 void saxpy_openmp(

2 int n, // the number of elements in the vectors

3 float a, // scale factor

4 float x[L1, / the first input vector

5 float yL1 / the output vector and second input vector
6) {

7 jfpragma omp parallel for

8 for (int 1 = 0; 1 < n; ++1)

9 ylil = a » x[i] + y[il;

10 |}

® codeplay” © 2020 Codeplay Software Ltd.

SAXPY: Serial (host)

int main(int argc, const char* argv([]) {
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float)):
'/ Define scalars n, a, b & initialize x,

0; 1 < n; ++1){
a*x[i] + yl[ils

for (int 1i
y[i]

free (x); free(y); return 0;

® codeplay” © 2020 Codeplay Software Ltd.

SAXPY: Serial (host)

int main(int argc, const char* argv([]) {

float *x = (float*) malloc(n * sizeof(float)):
float *y = (float*) malloc(n * sizeof(float));
Define scalars n, a, b & initialize x,
#pragma omp target data map(to:x[0:n])
for (int 1 = 0; 1 < n; ++1i){

y[i] = a*x[i] + y[il;
}

free(x); free(y); return 0;

® codeplay”

© 2020 Codeplay Software Ltd.

SAXPY: Coprocessor/Accelerator

int main(int argc, const char* argv([]) {

float *x = (float*) malloc(n * sizeof(float));
float *y = (float?*) malloc(n * sizeof(float)):;
'/ Define scalars n, a, b & initialize x,

#pragma omp target data map (to:x[0:n])
{
#pragma omp target map(tofrom:y)
#pragma omp teams num teams (num blocks) num threads(nthreads)

viallsagaa g llon
1] ey L

for (int 1 = 0; 1 < n; 1 += num blocks) {
for (int j = i; j < i + num blocks; j++) {
y[3i]l = a*x[j] + y[JI:

b}

free(x); freel(y); return 0;

® codeplay” © 2020 Codeplay Software Ltd.

distribute Construct

B Syntax (C/C++):
#fpragma omp distribute [clause[[,] clause],..]
for-loops

B Syntax (Fortran):

!'Somp teams [clause[[,] clause],..]
do—loops

M Clauses
private (list)
firstprivate(list)
collapse (n)
dist schedule (kind/[, chunk size])

® codeplay”

© 2020 Codeplay Software Ltd.

distribute Construct

B New kind of worksharing construct

—> Distribute the iterations of the associated loops across the
master threads of a teams construct

- No implicit barrier at the end of the construct

Mdist schedule(kind/[, chunk size])

—>If specified scheduling kind must be static

— Chunks are distributed in round-robin fashion of chunks
with size chunk size

—If no chunk size specified, chunks are of (almost) equal
size; each team receives at least one chunk

® codeplay” © 2020 Codeplay Software Ltd.

SAXPY: Coprocessor/Accelerator

int main(int argc, const char* argv([]) {

float *x = (float*) malloc(n * sizeof(float)):;

float *y = (float*) malloc(n * sizeof(float)):

// Define scalars n, a, b & initialize x, vy
#pragma omp target data map (to:x[0:n])
#pragma omp target map(tofrom:y)
#pragma omp teams num teams (num blocks) num threads

RN BN EET RN OO
l J all do the same l
A k ¢.A“ *, " ¥ " ¥] ¥

fpragma omp distribute

for (int 1 = 0; < n; 13 num blocks) {

n.ll.ll_ll.n
workshare (w/o barrier) l
a1
#pragma omp parallel for
for (int j = i + num blocks; j++ 1
IIIIIIIIIIIIIIIIIIIII“IIIIII
workshare (w/ barrier)
“u ““&“W"W“W“W“M “ﬂl

vl
b}

free (x);

® codeplay”

jl = a*x[3] + yl[jl:

free(y); return 0; }

(b

© 2020 Codeplay Software Ltd.

Act 3

SYCL Accelerator and Data Movement: Accessors and USM

® codeplay” © 2020 Codeplay Software Ltd.

SYCL aims to make data locality and movement efficient

» SYCL separates data storage from data access

» SYCL has separate structures for accessing data in different address
spaces

» SYCL allows you to create data dependency graphs

® codeplay” © 2020 Codeplay Software Ltd.

Separating Data & Access

Buffers allow type safe
access across host and
device

CPU

\ 4

[Buffer

GPU

Accessors are used to
detect dependencies

® codeplay’ © 2020 Codeplay Software Ltd.

Copying/Allocating Memory in Address Spaces

[Buffer

Memory stored in global
memory

Memory stored in read-
only memory

Memory stored in group
memory

® codeplay” © 2020 Codeplay Software Ltd.

Data Dependency Task Graphs

Buffer A >
= Kernel A
Kernel B
Buffer B

<ernel B

Buffer C

Buffer D

® codeplay’ © 2020 Codeplay Software Ltd.

Benefits of Data Dependency Graphs

* Allows you to describe your problems in terms of
relationships

 Don’t need to en-queue explicit copies

* Synchronisation can be performed using RAIl
e Automatically copy data back to the host if necessary

 Removes the need for complex event handling
* Dependencies between kernels are automatically constructed

* Allows the runtime to make data movement optimizations
* Pre-emptively copy data to a device before kernels
* Avoid unnecessary copying data back to the host after kernels

® codeplay”

© 2020 Codeplay Software Ltd.

So what does SYCL look like?

» Here is a simple example SYCL application; a vector add

® codeplay” © 2020 Codeplay Software Ltd.

Example: Vector Add

® codeplay” © 2020 Codeplay Software Ltd.

Example: Vector Add

|

I#include <CL/sycl.hpp4

a

template <typename T> L»
void parallel add(T *inputA, T *inputB, T *output, size t size) {

® codeplay” © 2020 Codeplay Software Ltd.

Example: Vector Add

#include <CL/sycl.hpp>

template <typename T>
void parallel add (T *inputA T *ippntR. T *ontpnt, size t size) {

cl::sycl::buffer<T, 1> inputABuf (inputhA, size);
cl::sycl::buffer<T, 1> inputBBuf (inputB, size);
cl::sycl::buffer<T, 1> outputBuf (output, size)

Create buffers to maintain

the data across host and
device

The buffers
synchronise upon
destruction

® codeplay’ © 2020 Codeplay Software Ltd.

Example: Vector Add

#include <CL/sycl.hpp>

template <typename T>
void parallel add(T *inputA, T *inputB, T *output, size t size) {
cl::sycl::buffer<T, 1> inputABuf (inputhA, size);
cl::sycl::buffer<T, 1> inputBBuf (inputB, size);
cl::sycl::buffer<T, 1> outputBuf (output, size);
cl::sycl::queue defaultQueue;

® codeplay” © 2020 Codeplay Software Ltd.

Example: Vector Add

#include <CL/sycl.hpp>

template <typename T>

void parallel add(T *inputA, T *inputB, T *output, size t size) {
cl::sycl::buffer<T, 1> inputABuf (inputhA, size);
cl::sycl::buffer<T, 1> inputBBuf (inputB, size);
cl::sycl::buffer<T, 1> outputBuf (output, size);
cl::svcl::queue defaultQueue;

ﬁefault@ueue.submit([&] (cl::sycl::handler &cgh)\{\

\w J\(

® codeplay” © 2020 Codeplay Software Ltd.

Example: Vector Add

#include <CL/sycl.hpp>

template <typename T>
void parallel add(T *inputA, T *inputB, T *output, size t size) {

cl::sycl::buffer<T, 1> inputABuf (inputhA, size);

cl::sycl::buffer<T, 1> inputBBuf (inputB, size);

cl::sycl::buffer<T, 1> outputBuf (output, size);

cl::sycl::queue defaultQueue;

defaultQueue.submit ([&] (cl::sycl::handler &cgh) {

auto inputAPtr = inputABuf.get access<cl::sycl::access::read>(cgh);

inputBBuf.get access<cl::sycl::access::read>(cgh);
outputBuf.get access<cl::sycl::access::write>(cgh) j

14

auto inputBPtr
auto outputPtr

® codeplay” © 2020 Codeplay Software Ltd.

Example: Vector Add

#include <CL/sycl.hpp>
template <typename T> kernel;

template <typename T>
void parallel add(T *inputA, T *inputB, T *output, size t size) {
cl::sycl::buffer<T, 1> inputABuf (inputhA, size);
cl::sycl::buffer<T, 1> inputBBuf (inputB, size);
cl::sycl::buffer<T, 1> outputBuf (output, size);
cl::sycl::queue defaultQueue;
defaultQueue.submit ([&] (cl::sycl::handler &cgh) {
auto inputAPtr = inputABuf.get access<cl::sycl::access::read>(cgh);
auto inputBPtr = inputBBuf.get access<cl::sycl::access::read>(cgh);
auto outputPtr = outputBuf.get access<cl::sycl::access::write>(cgh);
cgh.parallel for<kernel<T>>(cl::sycl::range<l>(size))
[=] (cl::sycl::id< idx) A

14

® codeplay” © 2020 Codeplay Software Ltd.

Example: Vector Add

#include <CL/sycl.hpp>
template <typename T> kernel;

template <typename T>
void parallel add(T *inputA, T *inputB, T *output, size t size) {
cl::sycl::buffer<T, 1> inputABuf (inputd, size);
cl::sycl::buffer<T, 1> inputBBuf (inputB, size); You must provide a
cl::sycl::buffer<T, 1> outputBuf (output, size); name for the lambda
cl::sycl::queue defaultQueue;

defaultQueue.submit ([&] (cl::sycl::handler &cgh
auto inputAPtr = inputABuf.get access<) ;
auto inputBPtr = inputBBuf.get l::sycl::access::read>(cgh);
auto outputPtr outputBu T _access<cl::sycl::access::write>(cgh);
cgh.parallel for<kernel<T>>(cl::sycl::range<l>(size)),
[=](cl::svcl::id<l>

outputPtr[idx] = inputAPtr[idx] + inputBPtr[idx] Access the data via the
accessor’s subscript

P:access::read>(cgh

4

operator

® codeplay’ © 2020 Codeplay Software Ltd.

Example: Vector Add

template <typename T>
void parallel add(T *inputA, T *inputB, T *output, size t size);

int main () {
float inputA[count] = { /* input a */ };
float inputB[count] = { /* input b */ };

float output[count]

{ /* output */ };

parallel add(inputA, inputB, output, count);
}

® codeplay”

© 2020 Codeplay Software Ltd.

How | learn to stop worrying and love

pointers

* Pointers are a fact of life in many existing C/C++ codes.

« Interesting programs operate on more than just Arrays of
POD.

« Rewriting C/C++ programs to augment with
buffers/accessors is a pain point for new programmers and
large programs.

* Also this along with in-order queues enables porting to from
CUDA or any explicit data movement type C++ framework,
especially one that is pointer-based program much easier

* when you have a simple program or don'’t care about data dependency

* when you are building some other framework on top of SYCL that requires explicit
control of data movement

® codeplay’ © 2020 Codeplay Software Ltd.

Pointers: Deconstruct SYCL Vector Add

#include <CL/sycl.hpp>
template <typename T> kernel;

template <typename T>
void parallel add(T *inputA, T *inputB, T *output, size t size) {
cl::sycl::buffer<T, 1> inputABuf (inputhA, size);
cl::sycl::buffer<T, 1> inputBBuf (inputB, size); All our pointers
cl::sycl::buffer<T, 1> outputBuf (output, size); became buffers
cl::sycl::queue defaultQueue;
defaultQueue.submit ([&] (cl::sycl::handler &cgh) {

auto inputAPtr = inputABuf.get access<cl::sycl::access::read>(cgh);
auto inputBPtr = inputBBuf.get access<cl::sycl::access::read>(cgh);
auto outputPtr = outputBuf.get access<cl::sycl::access::write>(cgh);

cgh.parallel for<kernel<T>>(cl::sycl::range<l>(size)),
[=] (cl::sycl::id<1l> idx)
outputPtr[idx] = inputAPtr[idx] + inputBPtr[idx];

14

Access have to be

1)) declared and used instead
. of pointers

® codeplay’ © 2020 Codeplay Software Ltd.

What is USM?

* Unified shared memory (USM) is an alternative pointer-
based data management model to the accessor-buffer
model.

e Unified virtual address space
* Pointer-based structures

e Explicit memory management
e Shared memory allocations

® codeplay” © 2020 Codeplay Software Ltd.

Unified Virtual Address Space

Unified virtual address space

*USM memory allocations return

pointers which are consistent o — P—
between the host application and x o
kernel functions on a device. R
*Representing data between the - '

host and device(s) does not
require creating accessors.

*Pointer-based APl more familiar ¢ ‘e
to C or C++ programmers. Host Co-processor

® codeplay” © 2020 Codeplay Software Ltd.

Pointer based structures

*Data is moved between the host
and device(s) in a span of Linked lst

S

memory in bytes rather than a pointer

buffer of a specific type.

*Pointers within that region of

UsM

memory can freely point to any

allocation

other address in that region.

*Easier to port existing C or C++

code to use SYCL.

wmnmnns

b

® codeplay”

[,
-

© 2020 Codeplay Software Ltd.

Explicit Memory Management

*Memory is allocated and data is
moved using explicit routines.

*Moving data between the host o

and device(s) does not require
accessors or submitting 3
command groups.

*The SYCL runtime will not
perform any data dependency
analysis, dependencies between
commands must be managed
manually.

Host Co-processor

® codeplay” © 2020 Codeplay Software Ltd.

Shared memory allocations

Unified virtual address space

*Some platforms will
support variants of USM Uniied memory
where memory allocations T
share the same memory) '
region between the host a2
and device(s).

*No explicit routines are ¢ e
required to move the data Host Co-processor
between the host and

device(s).

® codeplay” © 2020 Codeplay Software Ltd.

USM allocation types

« USM has three different kinds of memory
allocation.

A host allocation is allocated in host memory.

A device allocation is allocation in device
memory.

A shared allocation is allocated in shared
memory and can migrate back and forth.

® codeplay”

© 2020 Codeplay Software Ltd.

USM variants

® USM has four variants which a platform can support with varying levels of support.

® Each SYCL platform and it's device(s) will support different variants of USM and
different kinds of memory allocation.

Explicit USM Restricted USM Concurrent USM Systern USM
(minirmum) (optional) (optional) (optional)
Consistent pointers f of o o
i o
Pointer-based structures o o o
o o
Explicit data movement o o Vi
Shared memory allocations X of o v
Concurrent access X X o o
System allocations X X X Vi

® codeplay” © 2020 Codeplay Software Ltd.

SYCL Present and Future Roadmap (May Change)

(e @Ye

e
C

cH [’

PROGRAMMING LANGUAGE PROGRAMMING LANGUAGE PROGRAMMING LANGUAGE PROGRAMMING LANGUAGE PROGRAMMING LANGUAGE
C++11 C++14 C++17 C++20 C++23
SYCL 1.2 SYCL 1.2.1 SYCL 2020 SYCL 2021-?
C++11 Single source C++11 Single source C++17 Single source C++20 Single source
programming programming programming programming
Many backend options Many backend options
i % ey 7~ 7~
S /A & /A & /A . .
OpenCL OpenCL OpenCL OpenCL OpenCL
2011 2015 2017 2020 2021-222?
OpenCL 1.2 OpenCL 2.1 OpenCL 2.2 OpenCL 3.0

OpenCL C Kernel SPIR-V in Core

Language @Rm

® codeplay’

© 2020 Codeplay Software Ltd.

Vo5l | International
Is Organization for
NS

@ SYCL community is vibrant

SYCL F2F meetings attendance

LiJ
Ln

2X growth

Salt Lake City, |hpc 1L cppcon | 2017
Utah | matters. Lo —— . —
SYCL-1.2.1 — »
il 7
L0 el
1 C
posct7 -
- "
Denver. €O Dormacts. 1 L e -
c
-
cppcon | 2018
i -
L

LiJ
o

&~ 3 & £ vy
o 0 A4 i -
$18 @‘S‘Hﬁ ,,ge.rj'e Q:F} & o
P A S e S
WO o U A m
o A) B ™y

S IWOCL
DHPC[Z™ -

Distributed & Heterogeneous
Programming in C/C#+

Denver

Toronto, Canada
May 16-18, 2017

SYC L EVOI Utl on SYCL 2020 compared with SYCL 1.2.1

Easier to integrate with C++17 (CTAD, Deduction Guides...)
Less verbose, smaller code size, simplify patterns
Backend independent

SYCL 2020 Potential Features Multiple object archives aka modules simplify interoperability
Generalization (a.k.a the Backend Model) presented by Gordon Brown Ease porting C++ applications to SYCL
Unified Shared Memory (USM) presented by James Brodman Enable capabilities to improve programmability
Improvement to Program class Modules presented by Gordon Brown Backwards compatible but minor APl break based on user feedback

Host Task with Interop presented by Gordon Brown

In order queues, presented by James Brodman .
Integration of successful Converge SYCL with ISO

Extensions plus new Core S D R
functionality support OpenCL to

deploy on more devices
CPU

SYCL. SYCL 2020 Roadmap (WIP, MAY CHANGE) SYCL cPU

Al processors

2017 Improving Software Ecosystem Target 2020 Custom Processors
SYCL 1.2.1 TOCTI, libraries, GitHub . Provisional Q3 then Final Q4
Expanding Implementation Selected Extension o

DPC++ ot

TR Pipeline aiming for SYCL o :n—zrsn
triSYCL 2020'Provisional Q3 Rt e T T
hipSYCL Reduction |“*— EE

Regular Maintenance Updates Subgroups ——

Accessor simplification
Atomic rework
Extension mechanism
Address spaces

Spec clarifications, formatting and bug fixes
https://www.khronos.org/registry/SYCL/

® codeplay’

https://www.khronos.org/registry/SYCL/

SYCL Ecosystem, Research and Benchmarks

Machine Learning
Libraries and Parallel
Acceleration Frameworks

q P .
Implementations Research h— Benchmarks Linear Algebra

e E\(C\}P Libraries
S aé% | 7"’- Ce|er|ty EEEEEEEEEEE Eaecooy % BabelStream

SYCL-BLAS

OﬂgAPl 2 3 SYCL-ML

“% AT = : i " Background Parallel Research Kernels Eigen -

o DATA PARA”_EL (++ o Pnnubjlny of Muli Mt Kemels | L TensorFlow
B : e SYCL-DNN

oneMKL

SYCL Parallel STL

Performance portability of a Wilson Dslash Stencil
Operator Min using Kokkos and SYCL

C ComputeCpp

Afggﬂ.f'ﬁ’.ﬁ

&' Improning the Ferormance of Medical Inging RSBench
A S Argonne @ intel)
| HPC e~ Qrm ‘SYCLW £ XILINX. (#224

—

& wé University of
[AE] BRISTOL

GROUP

codeplay®

D20 Codeplay Software Ltd.

KHRCONOS

https://github.com/ANL-CESAR/RSBench

SYCL, Aurora and Exascale computing

System
Program | Laboratory | Timeline/Projected timeline Name/Prime System Architecture
Contractor
. : Cray Shasta with Intel
System delivered in late 2021 and
CORAL-1 | ANL Y pske {\urora/lntel Xeons and Intel X®

accepted in 2022 GPUs @

Cray Shasta with
AMD future Epyc
CPUs and future
Radeon GPUs AMD{%
Cray Shasta with
CPUs and GPUsAMDZ

' T
\ A Roadmap for SYCL/DPC++
on Aurora SYCL can
\ } R run on AMD
l) 12020 Codeplay Software Ltd.
YRSCALE COMPUTING PROJI=C

System delivered in late 2021 and

CORAL-2 | ORNL
accepted in 2022

Frontier/Cray

System delivered in late 2022 and
accepted in late 2023

CORAL-2 | LLNL

Ignite your applications
with XL Compilers
for C, C++, & Fortran

(
)

~dison

.

= e e

z SYCL

Visual C++ Source Code GreL

UNIVERSITAT
HEIDELBERG

(¢ codeplay’ & XILINX.

DPC++ ComputeCpp .
(VE=H SYCL 1.2.1 on triSYCL
LLVM/clang multiple

hipSYCL
SYCL 1.2.1 on

Open source CUDA &

test bed

LUCEY po b of oneAPl hardware HIP/ROCm
&
{"e,%& P I m
N\% OpenCL GpenhiP : OpenMiP
'— Iz
Any CPU CUDA+PTX Any CPU OpenCL+PTX OpenMP I g OpenMP CUDA
™ NVIDIA GPUs NVIDIA GPUs Any CPU Any CPU NVIDIA GPUs
; . W
R OpenCL + PSSl OpenCL + (oo e OpenCL + gg ROCm
opence TSIV, Sl SPIR(-V) el SPIR/LLVM " AMD GPUs
Intel CPUs Intel CPUs XILINX FPGAs
Intel GPUs Intel GPUs POCL
Intel FPGAs Intel FPGAs (open source OpenCL supporting

CPUs and NVIDIA GPUs and more)

AMD GPUs

® codeplay’ 5 © 2020 Codeplay Software Ltd.

Oh, and one more thing

® codeplay” © 2020 Codeplay Software Ltd.

Which Programming model works on all the Architectures?lIs there a pattern?

3 Multicore Manycore
Manycore vs Multicore CPU: OpenCL, OpenMP, SYCL,

)

C++11/14/17/20, TBB, Cilk, pthread

A

i s G
.

memory

memory

cores can be
hardware
multithreaded
(hyperthread)

Heterogeneous: CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20,

OpenACC, CUDA, hip, RocM, C++ AMP, Intrinsics, OpenGL, Vulkan,

CUDA, DirectX

PCI

memory

“Fused” CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20, hip,
RocM, Intrinsics, OpenGL, Vulkan, DirectX

Heterogeneous:

frn

memory

® codeplay’

Heterogeneous: CPU+Manycore CPU: OpenCL, OpenMP, SYCL,

C++11/14/17/20. TBB, Cilk_nthread
M M
network
interface

interconnection network

M

M

Heterogeneous: Multicore SMP+GPU Cluster: OpenCL, OpenMP, SYCL, C++17/20

M

T

To support all the different parallel architectures

 With a single source * You really only have a
code base few choices
 And if you also want it 77 -

to be an International OpenCL
Open Specification
 And if you want it to be
growing with the
architectures

® codeplay’ © 2020 Codeplay Software Ltd.

Summary of Programming models features

Portability

» SYCL is entirely standard C++, OpenCL is C99, OpenMP is
C, Fortran, C++

Performance

» SYCL and OpenCL compiles to SPIR, but SYCL 2020 can
also compile to other backends such as Vulkan, OpenMP,
Nvidia PTX/CUDA, or some proprietary device ISA.

Productivity

» SYCL and OpenCL supports a multi compilation model

® codeplay” © 2020 Codeplay Software Ltd.

Summary of Programming models features

» SYCL separates the storage and access of data and has both implicit and explicit
data movement; OpenCL, OpenMP, C++ has explicit data movement

» SYCL, OpenMP, C++ are single source; OpenCL is separate source for host and
device

» SYCL creates automatic data dependency graphs;

» C++ parallelism is still fairly low level from which all parallel patterns can be built;
OpenCL is higher level then C++; SYCL is the highest level; But this means some
parallel patterns are not yet available. Higher level means greater productivity.

® codeplay” © 2020 Codeplay Software Ltd.

Summary of Programming models features

» SYCL, OpenCL, C++ are an explicit parallelism model, OpenMP is a directive based
programming model

» SYCL and OpenCL are the most ideal for any kind of platforms in an open
environment and follows C++ and C closely. C++ allows this separation of concerns
and is ideal for general programming purposes. OpenMP is mostly ideal for Fortran
and older C code base and does not allow separation of concerns.

® codeplay” © 2020 Codeplay Software Ltd.

Use the Proper Abstraction in the future

Abstraction How is it supported

Cores
HW threads
Vectors

Atomic, Fences, lockfree, futures, counters, transactions

Parallel Loops

Heterogeneous offload, fpga

Distributed

Caches

Numa

TLS

Exception handling in concurrent environment

C++11/14/17 threads, async
C++11/14/17 threads, async
Parallelism TS2-

C++11/14/17 atomics, Concurrency TS1->C++20, Transactional
Memory TS1

Async, TBB:parallel_invoke, C++17 parallel algorithms, for_each

OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja, CUDA
P0796 on affinity

HPX, MPI, UPC++
P0O796 on affinity

C++17 false sharing support

OpenMP/ACC, Executors, Execution Context, Affinity, P0443-
>Executor TS

EALS, P0O772

EH reduction properties

SYCL Ecosystem

® ComputeCpp -
https://codeplay.com/products/computesuite/computecpp

triSYCL - https://github.com/triSYCL/triSYCL

SYCL - http://sycl.tech

SYCL ParallelSTL - https://github.com/KhronosGroup/SyclParallelSTL
VisionCpp - https://github.com/codeplaysoftware/visioncpp
SYCL-BLAS - https://github.com/codeplaysoftware/sycl-blas
TensorFlow-SYCL - https://github.com/codeplaysoftware/tensorflow
Eigen http://eigen.tuxfamily.org

® codeplay’ © 2020 Codeplay Software Ltd.

https://codeplay.com/products/computesuite/computecpp
https://github.com/triSYCL/triSYCL
http://sycl.tech/
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/visioncpp
https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/tensorflow
http://eigen.tuxfamily.org/

® codeplay”

Eigen Linear Algebra Library

SYCL backend in mainline

Focused on Tensor support, providing
support for machine learning/CNNs

Equivalent coverage to CUDA

Working on optimization for various
hardware architectures (CPU, desktop and
mobile GPUs)

https://bitbucket.org/eigen/eigen/

© 2020 Codeplay Software Ltd.

https://bitbucket.org/eigen/eigen/

® codeplay”

TensorFlow

SYCL backend support for all major CNN
operations

Complete coverage for major image
recognition networks

GooglLeNet, Inception-v2, Inception-v3,
ResNet,

Ongoing work to reach 100% operator
coverage and optimization for various
hardware architectures (CPU, desktop and
mobile GPUs)

https://github.com/tensorflow/tensorflow

TensorFlow, the TensorFlow logo and any related marks are
trademarks of Google Inc.

© 2020 Codeplay Software Ltd.

https://github.com/tensorflow/tensorflow

SYCL Ecosystem

« Single-source heterogeneous programming using STANDARD C++
- Use C++ templates and lambda functions for host & device code
- Layered over OpenCL

» Fast and powerful path for bring C++ apps and libraries to OpenCL
- C++ Kernel Fusion - better performance on complex software than hand-coding
- Halide, Eigen, Boost.Compute, SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL GTX
- Clang, triSYCL, ComputeCpp, VisionCpp, ComputeCpp SDK ...

¢ More information at http://sycl.tech

Developer Choice
The development of the two specifications are aligned so ‘ k= ” S H ok I
code can be easily shared between the two approaches J\/ Q g J5

® codeplay”

C++ Kernel Language
Low Level Control
‘GPGPU’-style separation of
device-side kernel source
code and host code

OpenCL

Single-source C++

sl SYCL for OpenCL

Other technologies

Tr .) } 1 —
Programmer Familiarity) = == S,
Approach also taken by "‘:'/. | OpenCL Devices | ‘ cPU W
C++ AMP and OpenMP : & =)
orenet cPU \{Z % FPGA
|
| GPU DSP
[

© 2020 Codeplay Software Ltd.

http://sycl.tech/

® codeplay’

Standards

bodies

* HSA Foundation: Chair of
software group, spec editor of
runtime and debugging

« Khronos: chair & spec editor of

SYCL. Contributors to OpenCL,

Safety Critical, Vulkan

ISO C++: Chair of Low Latency,

Embedded WG; Editor of SG1

Concurrency TS

+ EEMBC: members
VectorC for x86

First showing of
VectorC{VU}

Delivered VectorC{VU}
to the National Center
for Supercomputing

VectorC{EE) released

2001 - 2003

Codeplay

Research

Members of EU research
consortiums: PEPPHER,
LPGPU, LPGPU2, CARP

« Sponsorship of PhDs and EngDs
for heterogeneous programming:
HSA, FPGAs, ray-tracing
Collaborations with academics
Members of HIPEAC

HSA LLDB Debugger

* SPIR-V tools

« RenderScript debugger in AOSP
+ LLDB for Qualcomm Hexagon
TensorFlow for OpenCL

C++ 17 Parallel STL for SYCL
VisionCpp: C++ performance-
portable programming model for
vision

Sieve C++ Programming

System released

Offload released for

Ageia chooses Codeplay

for PhysX

Codeplay joins the
Khronos Group

Sony PlayStation®3

OffloadCL technology
developed

Codeplay joins the
PEPPHER project

Becomes specification
editor of the SYCL
standard

Building an LLVM back-end
Creating an SPMD Vectorizer for
OpenCL with LLVM

Challenges of Mixed-Width
Vector Code Gen & Scheduling
in LLVM

C++ on Accelerators: Supporting
Single-Source SYCL and HSA
LLDB Tutorial: Adding debugger
support for your target

LLDB Machine Interface
Driver released

Codeplay joins the CARP
projec

Codeplay shows
technology to

Chair of HSA System
Runtime working group

Development of tools
ing the Vulkan

on OpenCL using SPIR

APL

Based in Edinburgh, Scotland
57 staff, mostly engineering
License and customize
technologies for semiconductor
companies

ComputeAorta and
ComputeCpp: implementations
of OpenCL, Vulkan and SYCL
15+ years of experience in
heterogeneous systems tools

Open-Source HSA
Debugger release

Releases partial
OpenCL support (via
SYCL) for Eigen Tensors
to power TensorFlow

ComputeAorta 1.0
release

ComputeCpp Community
Edition beta release

Codeplay build the software platforms that deliver massive performance

20 Codeplay Software Ltd.

What our ComputeCpp users say about us

= -

Tensor

“We at Google have been working
closely with Luke and his Codeplay
colleagues on this project for almost
12 months now. Codeplay's
contribution to this effort has been
tremendous, so we felt that we should
let them take the lead when it comes
down to communicating updates
related to OpenCL. ... we are
planning to merge the work that has
been done so far... we want to put
together a comprehensive test
infrastructure”

® codeplay’

ONERA

“We work with royalty-free SYCL
because it is hardware vendor
agnostic, single-source C++
programming model without platform
specific keywords. This will allow us to
easily work with any heterogeneous
processor solutions using OpenCL to
develop our complex algorithms and
ensure future compatibility”

Hartmut Kaiser - HPX

“My team and | are working with
Codeplay's ComputeCpp for almost a
year now and they have resolved
every issue in a timely manner, while
demonstrating that this technology can
work with the most complex C++
template code. | am happy to say that
the combination of Codeplay's SYCL
implementation with our HPX runtime
system has turned out to be a very
capable basis for Building a
Heterogeneous Computing Model for
the C++ Standard using high-level
abstractions.”

WIGNER Research Centre
for Physics

It was a great pleasure this week for
us, that Codeplay released the
ComputeCpp project for the wider
audience. We've been waiting for this
moment and keeping our colleagues
and students in constant rally and
excitement. We'd like to build on this
opportunity to increase the awareness
of this technology by providing sample
codes and talks to potential users.
We're going to give a lecture series on
modern scientific programming
providing field specific examples.*

© 2020 Codeplay Software Ltd.

Further information

® OpenCL https://www.khronos.org/opencl/
® OpenVX
https://www.khronos.org/openvx/
® HSA http://www.hsafoundation.com/
® SYCL http://sycl.tech
® OpenCV http://opencv.org/
® Halide http://halide-lang.org/
¢ VISIOﬂCpp https://github.com/codeplaysoftware/visioncpp

® codeplay” © 2020 Codeplay Software Ltd.

https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
http://www.hsafoundation.com/
http://sycl.tech/
http://opencv.org/
http://halide-lang.org/
https://github.com/codeplaysoftware/visioncpp

SYCL.
C ComputeCpp

Community Edition
Available now for free!

Visit:
computecpp.codeplay.com

® codeplay’ © 2020 Codeplay Software Ltd.

SYCL.
C Co%uteCp

* Open source SYCL projects:
e ComputeCpp SDK - Collection of sample code and integration tools
e SYCL ParallelSTL — SYCL based implementation of the parallel algorithms
 VisionCpp — Compile-time embedded DSL for image processing
e Eigen C++ Template Library — Compile-time library for machine learning

All of this and more at: http://sycl.tech

® codeplay’ © 2020 Codeplay Software Ltd.

http://sycl.tech/

(. codeplay

ETEROGENEOUS S EXPERTS

Thanks

info@codeplay.co

m codeplay.com

@codeplaysoft

So if you can’t write a single program to run everywhere

» You need a programming model which allows you to compose your
problem in different ways

® codeplay” © 2020 Codeplay Software Ltd.

C++
Sourc

File

® codeplay’

C++ Compilation Model

o B

CPU
Object

o o> B (N

© 2020 Codeplay Software Ltd.

C++
Sourc

File

® codeplay’

C++ Compilation Model

o B

CPU
Object

o o> B (N

© 2020 Codeplay Software Ltd.

C++
Sourc

File

® codeplay’

C++ Compilation Model

o B

CPU
Object

e o B (0
? ol

© 2020 Codeplay Software Ltd.

How can we compile source code for a sub architectures?
» Separate source (OpenCL C, OpenCL C++, GLSL)
» Single source (SYCL, C++, CUDA, OpenMP, C++ AMP)

» Embedded DSLs (RapidMind, Halide)

® codeplay” © 2020 Codeplay Software Ltd.

Separate Source Compilation Model

C++
Sourc CPU _

o Bl | s (o -
File

I

Device
Sourc >
e

I

float *a, *b, *c; Here we’re using OpenCL as an example
kernel k = ?lCreateKernelFm, my kernel”, ”)'void my kernel(global £loat *a), global float *b}
clEnqueueWriteBuffer (.., size, a, ..); - — -
1E P ()) __global float *c) {
clEnqueueN;; © u(erkm,151?ef & I ,l}) int id = get global id(0);
clEnqueue 'ange wy big Ly size, 1, 0 o) 6 clid] = a[id] + b[id]:
clEnqueueWriteBuffer (.., size, c, ..);)

® codeplay’ © 2020 Codeplay Software Ltd.

C++
Sourc

File

Single Source Compilation Model

o PR S
>

cl[idx]

b)) s

array view<float> a, b, c; Here we are using C++ AMP as an example
extent<2> e (64, 064);

parallel for each(e, [

_ =] (index<2> 1idx) restrict (amp) {
= al[idx] + b[idx];

® codeplay’

© 2020 Codeplay Software Ltd.

C++
Sourc

Device
Source

hed

Single Source Compilation Model

CPU .
Device

0 (et)| 5
Object

cl[idx]
});

array view<float> a, b, c;
extent<2> e (64, 064);

parallel for each (e, [=] (index<2> idx) restrict (amp) ({

Here we are using C++ AMP as an example

= al[idx] + b[idx];

® codeplay’

© 2020 Codeplay Software Ltd.

C++
Sourc

Device
Source

hed

Single Source Compilation Model

o EREINERS S

Linker

Device
0 [emi|) | =i [0 5
Object

cl[idx]
});

array view<float> a, b, c;
extent<2> e (64, 064);

parallel for each (e, [=] (index<2> idx) restrict (amp) ({

Here we are using C++ AMP as an example

= al[idx] + b[idx];

® codeplay’

© 2020 Codeplay Software Ltd.

C++
Sourc

Device
Source

hed

Single Source Compilation Model

o MEISEEN &
Linker |f‘>
>

cl[idx]
});

array view<float> a, b, c;
extent<2> e (64, 064);

parallel for each (e, [=] (index<2> idx) restrict (amp) ({

Device
| > | > IR/ | >
Object
Here we are using C++ AMP as an example

= al[idx] + b[idx];

® codeplay’

© 2020 Codeplay Software Ltd.

Benefits of Single Source

*Device code is written in C++ in the same source file as the host
CPU code

*Allows compile-time evaluation of device code
*Supports type safety across host CPU and device
*Supports generic programming

eRemoves the need to distribute source code

® codeplay” © 2020 Codeplay Software Ltd.

SYCL aims to easily integrate with existing C++ libraries

» SYCL is completely standard C++ with no language extensions
» SYCL provides a limited subset of C++ features

® codeplay” © 2020 Codeplay Software Ltd.

Standard C++

L!!gﬁybat!_ vec add(float *a, float *b, float *c)

{ _ , . vector<float> a, b, c;
return c[i] = al[i] + b[i];
) D e o r1aio ey oo i o e e e
’IEJ = .size(); 1i++)
float array view<float> a, b, c;
vec_add< .
parallel for each(extent, [=] (index<2> 1idx) restrictﬁamg:
{
c[idx] = al[idx] + b[idx];
1)
cgh.parallel for<class vec add>(range, [=](cl::sycl::id<2> idx) {
c[idx] = a[idx] + c[idx];

1))

® codeplay’ © 2020 Codeplay Software Ltd.

C++ Features

 Supported: e Unsupported:
e Classes * Recursion
e QOperator overloading e Exception handling
e Lambdas e RTTI
e Static polymorphism * Dynamic allocation
* Placement allocation * Dynamic polymorphism
* Template recursion * Function pointers

* Virtual functions
e Static variables

® codeplay” © 2020 Codeplay Software Ltd.

SYCL aims to be open, portable and flexible

» SYCL offers a single source programming model with multi pass
compilation

® codeplay” © 2020 Codeplay Software Ltd.

Single Pass Compilation

)
C++ CPU
Sourc Object
Linker |$
Device
S 5=
Object

()
-

® codeplay’ © 2020 Codeplay Software Ltd.

Single Pass Compilation

C++
Sourc

e
| |$ Single Source Host & Device Compiler |$

Device
Code

hed

Proprietary black box

® codeplay’ © 2020 Codeplay Software Ltd.

Single Pass Compilation

3 different binaries

3 different compilers

C++ :
3 different language
Sourc extensions

e File

C++
AMP
Code

CUDA
Code CUDA Compiler

7

Open
MP OpenMP Compiler
Code

—

C++ AMP Compiler

® codeplay’ © 2020 Codeplay Software Ltd.

Multi Pass Compilation

GCC, Clang, VisualC++, Intel C++

CPU
Object
Device
Code
SPIR
—7

Linker

® codeplay’

Online
Finalize

© 2020 Codeplay Software Ltd.

C++
Sourc

Device
Code

hed

® codeplay’

Multi Pass Compilation

CPU
Object

SPIR

Linker

Online
Finalize

© 2020 Codeplay Software Ltd.

Multi Pass Compilation

)
C++ CPU
Sourc Object
e
)
Device
Code
L o

Online
er
SYCL does not mandate SPIR
Device can be $ -
selected at runtime
__ o8

® codeplay’ © 2020 Codeplay Software Ltd.

Multi Pass Compilation

) (&
>
- | o

o |

er :
© 2020 Codeplay Software Ltd.

)
CPU
Object

Linker

Multi Pass Compilation
)

& o> ¢>!2=

o) | o
Online
Finaliz
er

S LED

L
—

151 © 2020 Codeplay Software Ltd.

