
The landscape of Parallel Programing Models
Part 2:

The importance of Data

Michael Wong and Rod Burns
Codeplay Software Ltd.

Distiguished Engineer, Vice President of Ecosystem

IXPUG 2020

© 2020 Codeplay Software Ltd.2

© 2020 Codeplay Software Ltd.3

Michael Wong

Ported
TensorFlow to

open
standards
using SYCL

Releasing open-
source, open-

standards based AI
acceleration tools:

SYCL-BLAS, SYCL-ML,
VisionCpp

Build LLVM-
based

compilers for
accelerators

Implement
OpenCL and

SYCL for
accelerator
processors

Distinguished Engineer

● Chair of SYCL Heterogeneous Programming Language
● C++ Directions Group
● ISOCPP.org Director, VP

http://isocpp.org/wiki/faq/wg21#michael-wong
● michael@codeplay.com
● fraggamuffin@gmail.com
● Head of Delegation for C++ Standard for Canada
● Chair of Programming Languages for Standards

Council of Canada
Chair of WG21 SG19 Machine Learning
Chair of WG21 SG14 Games Dev/Low
Latency/Financial Trading/Embedded

● Editor: C++ SG5 Transactional Memory Technical
Specification

● Editor: C++ SG1 Concurrency Technical Specification
● MISRA C++ and AUTOSAR
● Chair of Standards Council Canada TC22/SC32

Electrical and electronic components (SOTIF)

● Chair of UL4600 Object Tracking

● http://wongmichael.com/about

● C++11 book in Chinese:
https://www.amazon.cn/dp/B00ETOV2OQ

We build GPU compilers for semiconductor companies

Now working to make AI/ML heterogeneous acceleration safe for

autonomous vehicle

http://isocpp.org/wiki/faq/wg21
mailto:michael@codeplay.com
mailto:fraggamuffin@gmail.com
http://wongmichael.com/about

© 2020 Codeplay Software Ltd.4

Acknowledgement and Disclaimer
Numerous people internal and external

to the original C++/Khronos group, in

industry and academia, have made

contributions, influenced ideas, written

part of this presentations, and offered

feedbacks to form part of this talk.

But I claim all credit for errors, and stupid mistakes. These

are mine, all mine! You can’t have them.

© 2020 Codeplay Software Ltd.5

Legal Disclaimer

THIS WORK REPRESENTS THE VIEW OF THE
AUTHOR AND DOES NOT NECESSARILY
REPRESENT THE VIEW OF CODEPLAY.

OTHER COMPANY, PRODUCT, AND SERVICE
NAMES MAY BE TRADEMARKS OR SERVICE

MARKS OF OTHERS.

© 2020 Codeplay Software Ltd.6

Disclaimers

NVIDIA, the NVIDIA logo and CUDA are trademarks and/or
registered trademarks of NVIDIA Corporation in the U.S.

and/or other countries

Codeplay is not associated with NVIDIA for this work and it is
purely using public documentation and widely available code

© 2020 Codeplay Software Ltd.7

3 Act Play

1. Parallel Heterogeneous

Programming Model

comparison

2. OpenMP Accelerator and

Data Movement

3. SYCL Data Movement:

Accessors and USM

Industry

Initiative

Intel

Product

© 2020 Codeplay Software Ltd.8

Comparison of Parallel Heterogeneous Programming Models

Act 1

Industry

Initiative

Intel

Product

© 2020 Codeplay Software Ltd.9

Programming Challenges
for Multiple Architectures

• Growth in specialized workloads

• No common programming language or APIs

• Inconsistent tool support across platforms

• Each platform requires unique software
investment

• Diverse set of data-centric hardware required

9

Languages & Libraries

Middleware / Frameworks

Application Workloads Need Diverse Hardware

SpatialMatrixVectorScalar

Other

Accel.
FPGAGPUCPU

XPUs

© 2020 Codeplay Software Ltd.10

Introducing oneAPI

Unified programming model to simplify
development across diverse architectures

• Unified and simplified language and
libraries for expressing parallelism

• Uncompromised native high-level language
performance

• Based on industry standards and open
specifications

• Interoperable with existing HPC
programming models

Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding
performance and optimization choices in Intel software products.

10

Middleware / Frameworks

Application Workloads Need Diverse Hardware

Industry

Initiative

Intel

Product

SpatialMatrixVectorScalar

Other

Accel.
FPGAGPUCPU

XPUs

© 2020 Codeplay Software Ltd.11

Vision for oneAPI Industry Initiative

1
1

A top-to-bottom ecosystem around oneAPI specification

oneAPI Specification

oneAPI Open Source Projects

oneAPI Commercial Products

Applications powered by oneAPI

© 2020 Codeplay Software Ltd.12

oneAPI Industry Initiative

–oneAPI Industry Specification

• A standards based cross-architecture language,
DPC++, based on C++ and SYCL

• Powerful APIs designed for acceleration of key
domain-specific functions

• Low-level hardware interface to provide a
hardware abstraction layer to vendors

• Enables code reuse across architectures and vendors

• Open standard to promote community and
industry support

–Technical Advisory Board

–oneAPI Industry Brand

1
2

Some capabilities may differ per architecture and custom-tuning will still be required.
Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding performance and
optimization choices in Intel software products.

API-Based ProgrammingDirect Programming

Data Parallel C++

oneAPI Industry Specification

Low-Level Hardware Interface

Middleware / Frameworks

Application Workloads

Visit oneapi.com for more details

Libraries

Other

Accel.
FPGAGPUCPU

XPUs

oneapi.com

© 2020 Codeplay Software Ltd.13

oneAPI Specification Feedback Process

1
3

We encourage feedback on the oneAPI

Specification from organizations and individuals

Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding
performance and optimization choices in Intel software products.

© 2020 Codeplay Software Ltd.14

Data parallel C++
Standards-based, Cross-architecture Language

Language to deliver uncompromised parallel programming
productivity and performance across CPUs and accelerators

DPC++ = ISO C++ and Khronos SYCL and Extensions

Allows code reuse across hardware targets, while permitting
custom tuning for a specific accelerator

Open, cross-industry alternative to single architecture proprietary
language

Based on C++

Delivers C++ productivity benefits, using common and familiar C
and C++ constructs

Incorporates SYCL* from the Khronos Group to support data
parallelism and heterogeneous programming

Community Project to drive language enhancements

Extensions to simplify data parallel programming

Open and cooperative development for continued evolution

DPC++ extensions including Unified Shared Memory are being
incorporated into upcoming versions of the Khronos SYCL
standard.

Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding performance and optimization

choices in Intel software products.

ISO C++

Khronos SYCL

Direct Programming:

Data Parallel C++

Community Extensions

oneAPI Industry Specification

Language Libraries

Low Level Hardware Interface

© 2020 Codeplay Software Ltd.15

oneAPI Specification

Libraries

Key domain-specific functions to accelerate

compute intensive workloads

Custom-coded for supported architectures

oneAPI Industry Specification

Language Libraries

Low Level Hardware Interface

Library Name Description Short name

oneAPI DPC++ Library Key algorithms and functions to speed

up DPC++ kernel programming

oneDPC

oneAPI Math Kernel

Library

Math routines including matrix algebra,

fast Fourier transforms (FFT), and vector

math

oneMKL

oneAPI Data Analytics

Library

Machine learning and data analytics

functions

oneDAL

oneAPI Deep Neural

Network Library

Neural networks functions for deep

learning training and inference

oneDNN

oneAPI Collective

Communications Library

Communication patterns for

distributed deep learning

oneCCL

oneAPI Threading

Building Blocks

Threading and memory management

template library

oneTBB

oneAPI Video Processing

Library

Real-time video decoding, encoding,

transcoding, and processing functions

oneVPL

1
5

Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding performance

and optimization choices in Intel software products

© 2020 Codeplay Software Ltd.16

oneAPI Level Zero

Hardware abstraction layer for low-level low-

latency accelerator programming control

Target: Hardware and OS vendors who would

like to implement oneAPI specification; as well

as runtime developers for other languages

oneAPI Industry Specification

Language Libraries

Low Level Hardware Interface

Optimized Middleware & Frameworks

Direct Programming API-based Programming

Language Libraries

Low Level Hardware InterfaceHost Interface

Spatial

FPGA

Matrix

AI

Vector

GPU*

Scalar

CPU

1
6

Refer to http://software.intel.com/en-us/articles/optimization-notice for more information regarding

performance and optimization choices in Intel software products

© 2020 Codeplay Software Ltd.17

oneAPI initiative – Ecosystem support

These organizations support the oneAPI initiative ‘concept’ for a single, unified programming model for cross-architecture development. It does not indicate any agreement to purchase or use of Intel’s products.

UNIVERSITY OF
CAMBRIDGEIndian Institute of

Technology Delhi

17

© 2020 Codeplay Software Ltd.18

Upcoming relevant DPC++ and SYCL talks
Date Start Time End Time Title Presenter

Wed 14th: 11:30 12:00 SYCL Performance and Portability Kumudha

Narasimhan

Thurs 15th: 12:30 14:00 Tutorials: OneAPI/ DPC++ Essential Series hands on (Through Friday)

oneAPI Intro Module: (This module is used to introduce oneAPI, DPC++

Hello World and Intel DevCloud)

DPC++ Program Structure: (Classes - device, device_selector, queue, basic

kernels and ND-Range kernels, Buffers-Accessor memory model, DPC++

Code Anatomy)

Praveen

Kundurthy

Thurs 15th: 14:15 15:15 Tutorial: DPC++ New Features - Unified Shared Memory (USM), Sub-

Groups (Intel oneAPI DPC++ Library -Usage of oneDPL, Buffer Iterators and

oneDPL with USM)

Praveen

Kundurthy

Friday 16th Full afternoon of tutorial sessions on developing with SYCL using DPC++

including how to run this code on Nvidia hardware

Monday 19th BYOC – Bring your own code along to this Intel workshop and work to bring it

to oneAPI and DPC++.

© 2020 Codeplay Software Ltd.20

Describing Parallelism

© 2020 Codeplay Software Ltd.21

How do you represent the different forms of parallelism?

➢ Directive vs explicit parallelism

➢ Task vs data parallelism

➢ Queue vs stream execution

© 2020 Codeplay Software Ltd.22

Directive vs Explicit Parallelism

vector<float> a, b, c;

#pragma omp parallel for

for(int i = 0; i < a.size(); i++) {

c[i] = a[i] + b[i];

}

array_view<float> a, b, c;

extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx)

restrict(amp) {

c[idx] = a[idx] + b[idx];

});

Examples:
• SYCL, CUDA, TBB, Fibers, C++11

Threads

Implementation:
• An API is used to explicitly

enqueuer one or more threads

Examples:
• OpenMP, OpenACC

Implementation:
• Compiler transforms code to

be parallel based on pragmas

Here we’re using C++ AMP as an exampleHere we’re using OpenMP as an example

© 2020 Codeplay Software Ltd.23

Task vs Data Parallelism

vector<task> tasks = { … };

tbb::parallel_for_each(tasks.begin(),

tasks.end(), [=](task &v) {

task();

});

Here we’re using OpenMP as an example

float *a, *b, *c;

cudaMalloc((void **)&a, size);

cudaMalloc((void **)&b, size);

cudaMalloc((void **)&c, size);

vec_add<<<64, 64>>>(a, b, c);

Examples:
• OpenMP, C++11 Threads, TBB

Implementation:
• Multiple (potentially different)

tasks are performed in parallel

Here we’re using CUDA as an exampleHere we’re using TBB as an example

Examples:
• C++ AMP, CUDA, SYCL, C++17

ParallelSTL

Implementation:
• The same task is performed

across a large data set

© 2020 Codeplay Software Ltd.24

Queue vs Stream Execution

float *a, *b, *c;

cudaMalloc((void **)&a, size);

cudaMalloc((void **)&b, size);

cudaMalloc((void **)&c, size);

vec_add<<<64, 64>>>(a, b, c);

Here we’re using OpenMP as an example

reduce void sum (float a<>,

reduce float r<>) {

r += a;

}

float a<100>;

float r;

sum(a,r);

Here we’re using BrookGPU as an example

Examples:
• BOINC, BrookGPU

Implementation:
• A function is executed on a

continuous loop on a stream of
data

Here we’re using CUDA as an example

Examples:
• C++ AMP, CUDA, SYCL, C++17

ParallelSTL

Implementation:
• Functions are placed in a

queue and executed once per
enqueuer

© 2020 Codeplay Software Ltd.25

Data Locality & Movement

© 2020 Codeplay Software Ltd.26

One of the biggest limiting factor in parallel and
heterogeneous computing

➢ Cost of data movement in time and power consumption

© 2020 Codeplay Software Ltd.27

Cost of Data Movement

•It can take considerable time to move data to a device
•This varies greatly depending on the architecture

•The bandwidth of a device can impose bottlenecks
•This reduces the amount of throughput you have on the device

•Performance gain from computation > cost of moving data
•If the gain is less than the cost of moving the data it’s not worth doing

•Many devices have a hierarchy of memory regions
•Global, read-only, group, private
•Each region has different size, affinity and access latency
•Having the data as close to the computation as possible reduces the cost

© 2020 Codeplay Software Ltd.28

How do you move data from the host CPU to a device and
back?

➢ Implicit vs explicit data movement

https://www.youtube.com/watch?v=dCdOaL3asx8&inde

x=18&list=PL_R5A0lGi1AA4Lv2bBFSwhgDaHvvpVU21

© 2020 Codeplay Software Ltd.29

© 2020 Codeplay Software Ltd.30

Implicit vs Explicit Data Movement

array_view<float> ptr;

extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx)

restrict(amp) {

ptr[idx] *= 2.0f;

});

Here we’re using OpenMP as an example

float *h_a = { … }, d_a;

cudaMalloc((void **)&d_a, size);

cudaMemcpy(d_a, h_a, size,

cudaMemcpyHostToDevice);

vec_add<<<64, 64>>>(a, b, c);

cudaMemcpy(d_a, h_a, size,

cudaMemcpyDeviceToHost);

Examples:
• OpenCL, CUDA, OpenMP

Implementation:
• Data is moved to the device

via explicit copy APIs

Here we’re using C++ AMP as an example

Examples:
• SYCL, C++ AMP

Implementation:
• Data is moved to the device

implicitly via cross host CPU /
device data structures

Here we’re using CUDA as an example

© 2020 Codeplay Software Ltd.33

OpenMP Accelerator and Data Movement
(WARNING: this is OpenMP 4, latest OpenMP will have new

additions and changes)

Act 2

© 2020 Codeplay Software Ltd.34

Device Model
• One host

• Multiple accelerators/coprocessors

© 2020 Codeplay Software Ltd.35

OpenCL Platform Model

© 2020 Codeplay Software Ltd.36

OpenCL and OpenMP Platform Model

© 2020 Codeplay Software Ltd.51

51

OpenMP SAXPY Implementation for CPU
Introduction to Parallel Computing, University of Oregon, IPCC

© 2020 Codeplay Software Ltd.52

SAXPY: Serial (host)

© 2020 Codeplay Software Ltd.53

SAXPY: Serial (host)

© 2020 Codeplay Software Ltd.54

SAXPY: Coprocessor/Accelerator

© 2020 Codeplay Software Ltd.55

distribute Construct

© 2020 Codeplay Software Ltd.56

distribute Construct

© 2020 Codeplay Software Ltd.57

SAXPY: Coprocessor/Accelerator

© 2020 Codeplay Software Ltd.60

Act 3

SYCL Accelerator and Data Movement: Accessors and USM

© 2020 Codeplay Software Ltd.61

SYCL aims to make data locality and movement efficient

➢ SYCL separates data storage from data access

➢ SYCL has separate structures for accessing data in different address
spaces

➢ SYCL allows you to create data dependency graphs

© 2020 Codeplay Software Ltd.62

Separating Data & Access

Buffer

Accessor CPU

GPUAccessor

Buffers allow type safe

access across host and

device

Accessors are used to

detect dependencies

© 2020 Codeplay Software Ltd.63

Kernel

Copying/Allocating Memory in Address Spaces

Buffer

Global

Accessor

Constant

Accessor

Local

Accessor

Memory stored in global

memory

Memory stored in read-

only memory

Memory stored in group

memory

© 2020 Codeplay Software Ltd.64

Data Dependency Task Graphs

Buffer B

Buffer C

Buffer D

Buffer A

Kernel B

Kernel C

Kernel A

Read

Accessor
Write

Accessor

Read

Accessor
Write

Accessor

Read

Accessor

Write

Accessor

Read

Accessor

Kernel C

Kernel A Kernel B

© 2020 Codeplay Software Ltd.65

Benefits of Data Dependency Graphs

• Allows you to describe your problems in terms of
relationships
• Don’t need to en-queue explicit copies

• Synchronisation can be performed using RAII
• Automatically copy data back to the host if necessary

• Removes the need for complex event handling
• Dependencies between kernels are automatically constructed

• Allows the runtime to make data movement optimizations
• Pre-emptively copy data to a device before kernels
• Avoid unnecessary copying data back to the host after kernels

© 2020 Codeplay Software Ltd.66

So what does SYCL look like?

➢ Here is a simple example SYCL application; a vector add

© 2020 Codeplay Software Ltd.67

Example: Vector Add

© 2020 Codeplay Software Ltd.68

Example: Vector Add

#include <CL/sycl.hpp>

template <typename T>

void parallel_add(T *inputA, T *inputB, T *output, size_t size) {

}

Include sycl.hpp for

the whole SYCL

runtime

© 2020 Codeplay Software Ltd.69

Example: Vector Add

#include <CL/sycl.hpp>

template <typename T>

void parallel_add(T *inputA, T *inputB, T *output, size_t size) {

cl::sycl::buffer<T, 1> inputABuf(inputA, size);

cl::sycl::buffer<T, 1> inputBBuf(inputB, size);

cl::sycl::buffer<T, 1> outputBuf(output, size);

}

Create buffers to maintain

the data across host and

device

The buffers

synchronise upon

destruction

© 2020 Codeplay Software Ltd.70

Example: Vector Add

#include <CL/sycl.hpp>

template <typename T>

void parallel_add(T *inputA, T *inputB, T *output, size_t size) {

cl::sycl::buffer<T, 1> inputABuf(inputA, size);

cl::sycl::buffer<T, 1> inputBBuf(inputB, size);

cl::sycl::buffer<T, 1> outputBuf(output, size);

cl::sycl::queue defaultQueue;

}

Create a queue to

en-queue work

© 2020 Codeplay Software Ltd.71

Example: Vector Add

#include <CL/sycl.hpp>

template <typename T>

void parallel_add(T *inputA, T *inputB, T *output, size_t size) {

cl::sycl::buffer<T, 1> inputABuf(inputA, size);

cl::sycl::buffer<T, 1> inputBBuf(inputB, size);

cl::sycl::buffer<T, 1> outputBuf(output, size);

cl::sycl::queue defaultQueue;

defaultQueue.submit([&] (cl::sycl::handler &cgh) {

});

}

Create a command group to define

an asynchronous task

The scope of the

command group is

defined by a lambda

© 2020 Codeplay Software Ltd.72

Example: Vector Add

#include <CL/sycl.hpp>

template <typename T>

void parallel_add(T *inputA, T *inputB, T *output, size_t size) {

cl::sycl::buffer<T, 1> inputABuf(inputA, size);

cl::sycl::buffer<T, 1> inputBBuf(inputB, size);

cl::sycl::buffer<T, 1> outputBuf(output, size);

cl::sycl::queue defaultQueue;

defaultQueue.submit([&] (cl::sycl::handler &cgh) {

auto inputAPtr = inputABuf.get_access<cl::sycl::access::read>(cgh);

auto inputBPtr = inputBBuf.get_access<cl::sycl::access::read>(cgh);

auto outputPtr = outputBuf.get_access<cl::sycl::access::write>(cgh);

});

}

Create accessors to give

access to the data on the

device

© 2020 Codeplay Software Ltd.73

Example: Vector Add

#include <CL/sycl.hpp>

template <typename T> kernel;

template <typename T>

void parallel_add(T *inputA, T *inputB, T *output, size_t size) {

cl::sycl::buffer<T, 1> inputABuf(inputA, size);

cl::sycl::buffer<T, 1> inputBBuf(inputB, size);

cl::sycl::buffer<T, 1> outputBuf(output, size);

cl::sycl::queue defaultQueue;

defaultQueue.submit([&] (cl::sycl::handler &cgh) {

auto inputAPtr = inputABuf.get_access<cl::sycl::access::read>(cgh);

auto inputBPtr = inputBBuf.get_access<cl::sycl::access::read>(cgh);

auto outputPtr = outputBuf.get_access<cl::sycl::access::write>(cgh);

cgh.parallel_for<kernel<T>>(cl::sycl::range<1>(size)),

[=](cl::sycl::id<1> idx) {

}));

});

}

Create a parallel_for to

define a kernel

© 2020 Codeplay Software Ltd.74

Example: Vector Add

#include <CL/sycl.hpp>

template <typename T> kernel;

template <typename T>

void parallel_add(T *inputA, T *inputB, T *output, size_t size) {

cl::sycl::buffer<T, 1> inputABuf(inputA, size);

cl::sycl::buffer<T, 1> inputBBuf(inputB, size);

cl::sycl::buffer<T, 1> outputBuf(output, size);

cl::sycl::queue defaultQueue;

defaultQueue.submit([&] (cl::sycl::handler &cgh) {

auto inputAPtr = inputABuf.get_access<cl::sycl::access::read>(cgh);

auto inputBPtr = inputBBuf.get_access<cl::sycl::access::read>(cgh);

auto outputPtr = outputBuf.get_access<cl::sycl::access::write>(cgh);

cgh.parallel_for<kernel<T>>(cl::sycl::range<1>(size)),

[=](cl::sycl::id<1> idx) {

outputPtr[idx] = inputAPtr[idx] + inputBPtr[idx];

}));

});

}

Access the data via the

accessor’s subscript

operator

You must provide a

name for the lambda

© 2020 Codeplay Software Ltd.75

Example: Vector Add

template <typename T>

void parallel_add(T *inputA, T *inputB, T *output, size_t size);

int main() {

float inputA[count] = { /* input a */ };

float inputB[count] = { /* input b */ };

float output[count] = { /* output */ };

parallel_add(inputA, inputB, output, count);

}

The result is stored in

output upon returning from

parallel_add

© 2020 Codeplay Software Ltd.81

• Pointers are a fact of life in many existing C/C++ codes.

• Interesting programs operate on more than just Arrays of
POD.

• Rewriting C/C++ programs to augment with
buffers/accessors is a pain point for new programmers and
large programs.

• Also this along with in-order queues enables porting to from
CUDA or any explicit data movement type C++ framework,
especially one that is pointer-based program much easier
• when you have a simple program or don’t care about data dependency

• when you are building some other framework on top of SYCL that requires explicit
control of data movement

How I learn to stop worrying and love
pointers

© 2020 Codeplay Software Ltd.82

Pointers: Deconstruct SYCL Vector Add

#include <CL/sycl.hpp>

template <typename T> kernel;

template <typename T>

void parallel_add(T *inputA, T *inputB, T *output, size_t size) {

cl::sycl::buffer<T, 1> inputABuf(inputA, size);

cl::sycl::buffer<T, 1> inputBBuf(inputB, size);

cl::sycl::buffer<T, 1> outputBuf(output, size);

cl::sycl::queue defaultQueue;

defaultQueue.submit([&] (cl::sycl::handler &cgh) {

auto inputAPtr = inputABuf.get_access<cl::sycl::access::read>(cgh);

auto inputBPtr = inputBBuf.get_access<cl::sycl::access::read>(cgh);

auto outputPtr = outputBuf.get_access<cl::sycl::access::write>(cgh);

cgh.parallel_for<kernel<T>>(cl::sycl::range<1>(size)),

[=](cl::sycl::id<1> idx) {

outputPtr[idx] = inputAPtr[idx] + inputBPtr[idx];

}));

});

}

Access have to be

declared and used instead

of pointers

All our pointers

became buffers

© 2020 Codeplay Software Ltd.83

• Unified shared memory (USM) is an alternative pointer-
based data management model to the accessor-buffer
model.
• Unified virtual address space

• Pointer-based structures

• Explicit memory management

• Shared memory allocations

What is USM?

© 2020 Codeplay Software Ltd.84

•USM memory allocations return
pointers which are consistent
between the host application and
kernel functions on a device.

•Representing data between the
host and device(s) does not
require creating accessors.

•Pointer-based API more familiar
to C or C++ programmers.

Unified Virtual Address Space

© 2020 Codeplay Software Ltd.85

•Data is moved between the host
and device(s) in a span of
memory in bytes rather than a
buffer of a specific type.

•Pointers within that region of
memory can freely point to any
other address in that region.

•Easier to port existing C or C++
code to use SYCL.

Pointer based structures

© 2020 Codeplay Software Ltd.86

•Memory is allocated and data is
moved using explicit routines.

•Moving data between the host
and device(s) does not require
accessors or submitting
command groups.

•The SYCL runtime will not
perform any data dependency
analysis, dependencies between
commands must be managed
manually.

Explicit Memory Management

© 2020 Codeplay Software Ltd.87

•Some platforms will
support variants of USM
where memory allocations
share the same memory
region between the host
and device(s).

•No explicit routines are
required to move the data
between the host and
device(s).

Shared memory allocations

© 2020 Codeplay Software Ltd.88

• USM has three different kinds of memory
allocation.
• A host allocation is allocated in host memory.
• A device allocation is allocation in device

memory.
• A shared allocation is allocated in shared

memory and can migrate back and forth.

USM allocation types

© 2020 Codeplay Software Ltd.89

• USM has four variants which a platform can support with varying levels of support.

• Each SYCL platform and it's device(s) will support different variants of USM and
different kinds of memory allocation.

USM variants

© 2020 Codeplay Software Ltd.90

SYCL Present and Future Roadmap (May Change)

2011

OpenCL 1.2
OpenCL C Kernel

Language

OpenCL 2.1
SPIR-V in Core

2015

SYCL 1.2
C++11 Single source

programming

OpenCL 2.2

2017

SYCL 1.2.1
C++11 Single source

programming

2020

SYCL 2020
C++17 Single source

programming
Many backend options

2021-????

SYCL 2021-?
C++20 Single source

programming
Many backend options

C++11 C++14 C++17 C++20

OpenCL 3.0

C++23

© 2020 Codeplay Software Ltd.91

SYCL community is vibrant

SYCL-1.2.1

2X growth

© 2020 Codeplay Software Ltd.92

SYCL 2020 Potential Features
Generalization (a.k.a the Backend Model) presented by Gordon Brown

Unified Shared Memory (USM) presented by James Brodman

Improvement to Program class Modules presented by Gordon Brown

Host Task with Interop presented by Gordon Brown

In order queues, presented by James Brodman

SYCL 2020 compared with SYCL 1.2.1
Easier to integrate with C++17 (CTAD, Deduction Guides...)

Less verbose, smaller code size, simplify patterns

Backend independent

Multiple object archives aka modules simplify interoperability

Ease porting C++ applications to SYCL

Enable capabilities to improve programmability

Backwards compatible but minor API break based on user feedback

SYCL Evolution

2017

SYCL 1.2.1

Improving Software Ecosystem
Tool, libraries, GitHub

Expanding Implementation
DPC++

ComputeCpp

triSYCL

hipSYCL

Regular Maintenance Updates
Spec clarifications, formatting and bug fixes

https://www.khronos.org/registry/SYCL/

Target 2020

Provisional Q3 then Final Q4

Selected Extension

Pipeline aiming for SYCL

2020 Provisional Q3
Reduction

Subgroups

Accessor simplification

Atomic rework

Extension mechanism

Address spaces

Vector rework

Specialization Constants

Integration of successful

Extensions plus new Core

functionality

Converge SYCL with ISO

C++ and continue to

support OpenCL to

deploy on more devices
CPU

GPU

FPGA

AI processors

Custom Processors

Repeat The Cycle every 1.5-3 years

SYCL 2020 Roadmap (WIP, MAY CHANGE)

https://www.khronos.org/registry/SYCL/

© 2020 Codeplay Software Ltd.93

SYCL Ecosystem, Research and Benchmarks

Active Working Group Members

Benchmarks

SYCL-BLAS

Linear Algebra

Libraries
Implementations

SYCL-DNN

Machine Learning

Libraries and Parallel

Acceleration Frameworks

Research

SYCL-MLEigen

RSBench

SYCL Parallel STL

oneAPI

oneMKL

https://github.com/ANL-CESAR/RSBench

© 2020 Codeplay Software Ltd.94

SYCL, Aurora and Exascale computing

SYCL can

run on AMD

ROCM

© 2020 Codeplay Software Ltd.95

SYCL

Source Code

DPC++
Uses

LLVM/clang

Part of oneAPI

ComputeCpp
SYCL 1.2.1 on

multiple

hardware

triSYCL
Open source

test bed

hipSYCL
SYCL 1.2.1 on

CUDA &

HIP/ROCm

Any CPU

OpenCL +

SPIR-V

Any CPU

OpenCL +

SPIR(-V)

OpenCL+PTX

Intel CPUs

Intel GPUs

Intel FPGAs

Intel CPUs

Intel GPUs

Intel FPGAs

AMD GPUs
(depends on driver stack)

Arm Mali

IMG PowerVR

Renesas R-Car

NVIDIA GPUs

OpenMP

OpenCL +

SPIR/LLVM

XILINX FPGAs

POCL
(open source OpenCL supporting

CPUs and NVIDIA GPUs and more)

Any CPU

E
x
p
e
rim

e
n
ta

l OpenMP

ROCm

CUDA

AMD GPUs

NVIDIA GPUsAny CPU

CUDA+PTX

NVIDIA GPUs

© 2020 Codeplay Software Ltd.96

Oh, and one more thing

© 2020 Codeplay Software Ltd.97

Which Programming model works on all the Architectures?Is there a pattern?

• Heterogeneous: CPU+Manycore CPU: OpenCL, OpenMP, SYCL,
C++11/14/17/20, TBB, Cilk, pthread

• Heterogeneous: Multicore SMP+GPU Cluster: OpenCL, OpenMP, SYCL, C++17/20

 Multicore Manycore
 Manycore vs Multicore CPU: OpenCL, OpenMP, SYCL,

C++11/14/17/20, TBB, Cilk, pthread

 Heterogeneous: CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20,
OpenACC, CUDA, hip, RocM, C++ AMP, Intrinsics, OpenGL, Vulkan,
CUDA, DirectX

 Heterogeneous: “Fused” CPU + GPU: OpenCL, OpenMP, SYCL, C++17/20, hip,
RocM, Intrinsics, OpenGL, Vulkan, DirectX

memory

C C C C
m m m m

processor

memory

PCI

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

processor

memory

cores can be
hardware
multithreaded
(hyperthread)

97

… …

… …

…

…

interconnection network

M

M

PP P P

PPPP

network
interface

M

M

memory

C C C C
m m m m

C C C C
m m m m

C C C C
m m m m

C C C C
m m m m

© 2020 Codeplay Software Ltd.98

To support all the different parallel architectures

• With a single source
code base

• And if you also want it
to be an International
Open Specification

• And if you want it to be
growing with the
architectures

• You really only have a
few choices

© 2020 Codeplay Software Ltd.99

Summary of Programming models features

➢ SYCL is entirely standard C++, OpenCL is C99, OpenMP is
C, Fortran, C++

➢ SYCL and OpenCL compiles to SPIR, but SYCL 2020 can
also compile to other backends such as Vulkan, OpenMP,
Nvidia PTX/CUDA, or some proprietary device ISA.

➢ SYCL and OpenCL supports a multi compilation model

Performance

Productivity

Portability

© 2020 Codeplay Software Ltd.100

Summary of Programming models features

➢ SYCL separates the storage and access of data and has both implicit and explicit
data movement; OpenCL, OpenMP, C++ has explicit data movement

➢ SYCL, OpenMP, C++ are single source; OpenCL is separate source for host and
device

➢ SYCL creates automatic data dependency graphs;

➢ C++ parallelism is still fairly low level from which all parallel patterns can be built;
OpenCL is higher level then C++; SYCL is the highest level; But this means some
parallel patterns are not yet available. Higher level means greater productivity.

© 2020 Codeplay Software Ltd.101

Summary of Programming models features

➢ SYCL, OpenCL, C++ are an explicit parallelism model, OpenMP is a directive based
programming model

➢ SYCL and OpenCL are the most ideal for any kind of platforms in an open
environment and follows C++ and C closely. C++ allows this separation of concerns
and is ideal for general programming purposes. OpenMP is mostly ideal for Fortran
and older C code base and does not allow separation of concerns.

© 2020 Codeplay Software Ltd.102

Use the Proper Abstraction in the future
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async

Vectors Parallelism TS2-

Atomic, Fences, lockfree, futures, counters, transactions C++11/14/17 atomics, Concurrency TS1->C++20, Transactional

Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel algorithms, for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja, CUDA

P0796 on affinity

Distributed HPX, MPI, UPC++

P0796 on affinity

Caches C++17 false sharing support

Numa OpenMP/ACC, Executors, Execution Context, Affinity, P0443-

>Executor TS

TLS EALS, P0772

Exception handling in concurrent environment EH reduction properties

P0797

© 2020 Codeplay Software Ltd.110

SYCL Ecosystem
● ComputeCpp -

https://codeplay.com/products/computesuite/computecpp
● triSYCL - https://github.com/triSYCL/triSYCL
● SYCL - http://sycl.tech
● SYCL ParallelSTL - https://github.com/KhronosGroup/SyclParallelSTL
● VisionCpp - https://github.com/codeplaysoftware/visioncpp
● SYCL-BLAS - https://github.com/codeplaysoftware/sycl-blas
● TensorFlow-SYCL - https://github.com/codeplaysoftware/tensorflow
● Eigen http://eigen.tuxfamily.org

https://codeplay.com/products/computesuite/computecpp
https://github.com/triSYCL/triSYCL
http://sycl.tech/
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/visioncpp
https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/tensorflow
http://eigen.tuxfamily.org/

© 2020 Codeplay Software Ltd.111

Eigen Linear Algebra Library
SYCL backend in mainline

Focused on Tensor support, providing

support for machine learning/CNNs

Equivalent coverage to CUDA

Working on optimization for various

hardware architectures (CPU, desktop and

mobile GPUs)

https://bitbucket.org/eigen/eigen/

https://bitbucket.org/eigen/eigen/

© 2020 Codeplay Software Ltd.112

TensorFlow
SYCL backend support for all major CNN

operations

Complete coverage for major image

recognition networks

GoogLeNet, Inception-v2, Inception-v3,

ResNet, ….

Ongoing work to reach 100% operator

coverage and optimization for various

hardware architectures (CPU, desktop and

mobile GPUs)

https://github.com/tensorflow/tensorflow

TensorFlow, the TensorFlow logo and any related marks are

trademarks of Google Inc.

https://github.com/tensorflow/tensorflow

© 2020 Codeplay Software Ltd.113

SYCL Ecosystem
• Single-source heterogeneous programming using STANDARD C++

- Use C++ templates and lambda functions for host & device code

- Layered over OpenCL

• Fast and powerful path for bring C++ apps and libraries to OpenCL

- C++ Kernel Fusion - better performance on complex software than hand-coding

- Halide, Eigen, Boost.Compute, SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL GTX

- Clang, triSYCL, ComputeCpp, VisionCpp, ComputeCpp SDK …

• More information at http://sycl.tech

C++ Kernel Language
Low Level Control

‘GPGPU’-style separation of

device-side kernel source

code and host code

Single-source C++
Programmer Familiarity

Approach also taken by

C++ AMP and OpenMP

Developer Choice
The development of the two specifications are aligned so
code can be easily shared between the two approaches

http://sycl.tech/

© 2020 Codeplay Software Ltd.114

Codeplay
Standards

bodies
• HSA Foundation: Chair of

software group, spec editor of
runtime and debugging

• Khronos: chair & spec editor of
SYCL. Contributors to OpenCL,
Safety Critical, Vulkan

• ISO C++: Chair of Low Latency,
Embedded WG; Editor of SG1
Concurrency TS

• EEMBC: members

Research

• Members of EU research
consortiums: PEPPHER,
LPGPU, LPGPU2, CARP

• Sponsorship of PhDs and EngDs
for heterogeneous programming:
HSA, FPGAs, ray-tracing

• Collaborations with academics

• Members of HiPEAC

Open
source

• HSA LLDB Debugger

• SPIR-V tools

• RenderScript debugger in AOSP

• LLDB for Qualcomm Hexagon

• TensorFlow for OpenCL

• C++ 17 Parallel STL for SYCL

• VisionCpp: C++ performance-
portable programming model for
vision

Presentati
ons

• Building an LLVM back-end

• Creating an SPMD Vectorizer for
OpenCL with LLVM

• Challenges of Mixed-Width
Vector Code Gen & Scheduling
in LLVM

• C++ on Accelerators: Supporting
Single-Source SYCL and HSA

• LLDB Tutorial: Adding debugger
support for your target

Company

• Based in Edinburgh, Scotland

• 57 staff, mostly engineering

• License and customize
technologies for semiconductor
companies

• ComputeAorta and
ComputeCpp: implementations
of OpenCL, Vulkan and SYCL

• 15+ years of experience in
heterogeneous systems tools

Codeplay build the software platforms that deliver massive performance

© 2020 Codeplay Software Ltd.115

What our ComputeCpp users say about us

“We at Google have been working
closely with Luke and his Codeplay
colleagues on this project for almost

12 months now. Codeplay's
contribution to this effort has been

tremendous, so we felt that we should
let them take the lead when it comes

down to communicating updates
related to OpenCL. … we are

planning to merge the work that has
been done so far… we want to put

together a comprehensive test
infrastructure”

Benoit Steiner – Google
TensorFlow engineer

“We work with royalty-free SYCL
because it is hardware vendor
agnostic, single-source C++

programming model without platform
specific keywords. This will allow us to

easily work with any heterogeneous
processor solutions using OpenCL to
develop our complex algorithms and

ensure future compatibility”

ONERA

“My team and I are working with
Codeplay's ComputeCpp for almost a

year now and they have resolved
every issue in a timely manner, while

demonstrating that this technology can
work with the most complex C++

template code. I am happy to say that
the combination of Codeplay's SYCL
implementation with our HPX runtime

system has turned out to be a very
capable basis for Building a

Heterogeneous Computing Model for
the C++ Standard using high-level

abstractions.”

Hartmut Kaiser - HPX

It was a great pleasure this week for
us, that Codeplay released the

ComputeCpp project for the wider
audience. We've been waiting for this
moment and keeping our colleagues

and students in constant rally and
excitement. We'd like to build on this

opportunity to increase the awareness
of this technology by providing sample

codes and talks to potential users.
We're going to give a lecture series on

modern scientific programming
providing field specific examples.“

WIGNER Research Centre

for Physics

© 2020 Codeplay Software Ltd.116

Further information

• OpenCL https://www.khronos.org/opencl/

• OpenVX
https://www.khronos.org/openvx/

• HSA http://www.hsafoundation.com/

• SYCL http://sycl.tech

• OpenCV http://opencv.org/

• Halide http://halide-lang.org/

• VisionCpp https://github.com/codeplaysoftware/visioncpp

https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
http://www.hsafoundation.com/
http://sycl.tech/
http://opencv.org/
http://halide-lang.org/
https://github.com/codeplaysoftware/visioncpp

© 2020 Codeplay Software Ltd.117

Community Edition

Available now for free!

Visit:

computecpp.codeplay.com

© 2020 Codeplay Software Ltd.118

• Open source SYCL projects:
• ComputeCpp SDK - Collection of sample code and integration tools

• SYCL ParallelSTL – SYCL based implementation of the parallel algorithms

• VisionCpp – Compile-time embedded DSL for image processing

• Eigen C++ Template Library – Compile-time library for machine learning

All of this and more at: http://sycl.tech

http://sycl.tech/

@codeplaysoft codeplay.com
info@codeplay.co

m

Thanks

© 2020 Codeplay Software Ltd.129

So if you can’t write a single program to run everywhere

➢ You need a programming model which allows you to compose your
problem in different ways

© 2020 Codeplay Software Ltd.130

C++ Compilation Model

CPU

Compil

er

CPU

Object
x86 ISA

C++

Sourc

e

File

Linker
x86

CPU

© 2020 Codeplay Software Ltd.131

C++ Compilation Model

CPU

Compil

er

CPU

Object
x86 ISA

C++

Sourc

e

File

Linker
x86

CPU

© 2020 Codeplay Software Ltd.132

C++ Compilation Model

CPU

Compil

er

CPU

Object
x86 ISA

C++

Sourc

e

File

Linker
x86

CPU

GPU

© 2020 Codeplay Software Ltd.133

How can we compile source code for a sub architectures?

➢ Separate source (OpenCL C, OpenCL C++, GLSL)

➢ Single source (SYCL, C++, CUDA, OpenMP, C++ AMP)

➢ Embedded DSLs (RapidMind, Halide)

© 2020 Codeplay Software Ltd.134

Separate Source Compilation Model

CPU

Compil

er

CPU

Object
x86 ISA

C++

Sourc

e

File

Linker
x86

CPU

Device

Sourc

e

Online

Compil

er

GPU

float *a, *b, *c;

…

kernel k = clCreateKernel(…, “my_kernel”, …);

clEnqueueWriteBuffer(…, size, a, …);

clEnqueueWriteBuffer(…, size, a, …);

clEnqueueNDRange(…, k, 1, {size, 1, 1}, …);

clEnqueueWriteBuffer(…, size, c, …);

void my_kernel(__global float *a, __global float *b,

__global float *c) {

int id = get_global_id(0);

c[id] = a[id] + b[id];

}

Here we’re using OpenCL as an example

© 2020 Codeplay Software Ltd.135

Single Source Compilation Model

CPU

Compil

er

CPU

Object
x86 ISA

C++

Sourc

e

File

Linker
x86

CPU

GPU

array_view<float> a, b, c;

extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {

c[idx] = a[idx] + b[idx];

});

Here we are using C++ AMP as an example

© 2020 Codeplay Software Ltd.136

Single Source Compilation Model

C++

Sourc

e

File

Device

Source Device

Compil

er

Device

IR /

Object

CPU

Compil

er

CPU

Object
x86 ISALinker

x86

CPU

GPU

array_view<float> a, b, c;

extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {

c[idx] = a[idx] + b[idx];

});

Here we are using C++ AMP as an example

© 2020 Codeplay Software Ltd.137

array_view<float> a, b, c;

extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {

c[idx] = a[idx] + b[idx];

});

Single Source Compilation Model

Device

Compil

er

Device

IR /

Object

CPU

Compil

er

CPU

Object
x86 ISA

Linker

x86

CPU

C++

Sourc

e

File

Device

Source

GPU

Here we are using C++ AMP as an example

© 2020 Codeplay Software Ltd.138

Single Source Compilation Model

Device

Compil

er

Device

IR /

Object

CPU

Compil

er

CPU

Object
x86 ISA
(Embedde

d Device

IR /

Object)

Linker

x86

CPU

C++

Sourc

e

File

Device

Source

GPU

array_view<float> a, b, c;

extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {

c[idx] = a[idx] + b[idx];

});

Here we are using C++ AMP as an example

© 2020 Codeplay Software Ltd.139

Benefits of Single Source

•Device code is written in C++ in the same source file as the host
CPU code

•Allows compile-time evaluation of device code

•Supports type safety across host CPU and device

•Supports generic programming

•Removes the need to distribute source code

© 2020 Codeplay Software Ltd.140

SYCL aims to easily integrate with existing C++ libraries

➢ SYCL is completely standard C++ with no language extensions

➢ SYCL provides a limited subset of C++ features

© 2020 Codeplay Software Ltd.141

__global__ vec_add(float *a, float *b, float *c)

{

return c[i] = a[i] + b[i];

}

float *a, *b, *c;

vec_add<<<range>>>(a, b, c);

vector<float> a, b, c;

#pragma parallel_for

for(int i = 0; i < a.size(); i++)

{

c[i] = a[i] + b[i];

}

Standard C++

cgh.parallel_for<class vec_add>(range, [=](cl::sycl::id<2> idx) {

c[idx] = a[idx] + c[idx];

}));

array_view<float> a, b, c;

parallel_for_each(extent, [=](index<2> idx) restrict(amp)

{

c[idx] = a[idx] + b[idx];

});

© 2020 Codeplay Software Ltd.142

• Unsupported:
• Recursion

• Exception handling

• RTTI

• Dynamic allocation

• Dynamic polymorphism

• Function pointers

• Virtual functions

• Static variables

C++ Features

• Supported:
• Classes

• Operator overloading

• Lambdas

• Static polymorphism

• Placement allocation

• Template recursion

Some features cannot be

supported on device due to

hardware restrictions

© 2020 Codeplay Software Ltd.143

SYCL aims to be open, portable and flexible

➢ SYCL offers a single source programming model with multi pass
compilation

© 2020 Codeplay Software Ltd.144

Single Pass Compilation

Device

Compil

er

Device

Object

CPU

Compil

er

CPU

Object

x86 ISA
(Embedde

d Device

Object)

Linker

x86

CPU

C++

Sourc

e

File

Device

Code

GPU

© 2020 Codeplay Software Ltd.145

Single Source Host & Device Compiler

Single Pass Compilation

x86 ISA
(Embedde

d Device

Object)

x86

CPU

C++

Sourc

e

File

Device

Code

GPU

Proprietary black box

© 2020 Codeplay Software Ltd.146

CPU

Single Pass Compilation

x86 ISA
(Embedde

d AMD

ISA)

AMD

GPU

C++

Sourc

e File

C++

AMP

Code

CUDA

Code

Open

MP

Code

CUDA Compiler

C++ AMP Compiler

OpenMP Compiler

x86 ISA
(Embedde

d NVidia

ISA)

x86 ISA
(Embedde

d x86)

CPU NVidia

GPU

CPU SIMD

CPU

3 different compilers3 different language

extensions

3 different binaries

© 2020 Codeplay Software Ltd.147

Multi Pass Compilation

SYCL

Compil

er

SPIR

CPU

Compil

er

CPU

Object

x86 ISA
(Embedde

d SPIR)

Linker

x86

CPU

C++

Sourc

e

File

Device

Code

GPU

Online

Finalize

r

GCC, Clang, VisualC++, Intel C++

© 2020 Codeplay Software Ltd.148

Multi Pass Compilation

SYCL

Compil

er

SPIR

CPU

Compil

er

CPU

Object

x86 ISA
(Embedde

d SPIR)

Linker

x86

CPU

C++

Sourc

e

File

Device

Code

GPU

Online

Finalize

r

© 2020 Codeplay Software Ltd.149

Multi Pass Compilation

SYCL

Compil

er

SPIR

CPU

Compil

er

CPU

Object

x86 ISA
(Embedde

d SPIR)

Linker

x86

CPU

C++

Sourc

e

File

Device

Code

Online

Finaliz

er

SIMD

CPU

GPU

APU

FPGA

DSP

SYCL does not mandate SPIR

Device can be

selected at runtime

© 2020 Codeplay Software Ltd.150

Multi Pass Compilation

SYCL

Compil

er

SPIR

CPU

Compil

er

CPU

Object

x86 ISA
(Embedde

d SPIR)

Linker

x86

CPU

C++

Sourc

e

File

Device

Code

Online

Finaliz

er

SIMD

CPU

GPU

APU

FPGA

DSP

SYCL

Compil

er

PTX

© 2020 Codeplay Software Ltd.151

Multi Pass Compilation

SYCL

Compil

er

SPIR

CPU

Compil

er

CPU

Object

x86 ISA
(Embedde

d SPIR)

Linker

x86

CPU

C++

Sourc

e

File

Device

Code

Online

Finaliz

er

SIMD

CPU

GPU

APU

FPGA

DSP

SYCL

Compil

er

PTX

