From Tensor Processing Primitives towards
Tensor Compilers using upstream MLIR

Alexander Heinecke

Intel Fellow, Intel Parallel Computing Lab

intel.

Disclaimer

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.
Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will
affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete
information about performance and benchmark results, visit http://www.intel.com/performance.

Some results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling and provided to you for
informational purposes.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web
site and confirm whether referenced data are accurate.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others. © 2024 Intel Corporation.

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |nte|@

2

http://www.intel.com/performance

Outline

= Motivation & Parallel Computing Lab Charter

" Tensor Processing Primitives - TPP (micro-kernels for hardware
abstraction)

e CPU
e GPU ukernel and CUTLASS efforts

=" TPP-MLIR for CPU & GPU (a compiler based on standard micro-kernel
abstraction)

" Triton-CPU accelerated by TPP

= Summary

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR

intel.

3

Motivation — Parallel Computing Lab Charter

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |hte|®

Hardware/Software Co-Design — the next 1000x
= We are no longer getting higher frequencies

®* The only way forward is more cores and even these avenues start to fall
off the die size cliff -> wafer-scale, packaging, interconnect

" Architectural Innovation is more important than ever

» Portable, Automated programming, e.g. DSL/JITs

Classic /\ /\
Implementation
/ /

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://newsroom.intel.com/press-kits/intel-labs-day-2020/

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |hte|®

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://newsroom.intel.com/press-kits/intel-labs-day-2020/

Algorithmic Challenges — Amdahl's Law

20%

Amdahl's Law
E -
=% Parallel
— G5%
— 9%
o | — 75%
- — 5%
(=9
7
=
2k} =D
G —
&
o

1 2 4 & 16 32 64 128

cores

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR

256

I
812

I
1024

intel.

6

Fused Building Blocks: Attention

Multi-Head Attention

= Fuse transposes with

GEMM compute
* Avoid explicit matrix Coneat
transpose on input & !
ScaladDot-_Pmdum Jl
* Fuse it in BRGEMM kernel — e
(B-trans) L L
Lirear Liresar Linaar
* If required, perform it on r r
output matrix | ! |
= Fuse
Scale/Dropout/Softmax/ Scaled Dot-Product Attention
Mask

Mathiul

)

e Operation performed on
block of output

g
=
=
B

* Local to given thread Mask (opt.)

e Suitable for tensor-ISA Scale
implementation

ol

o,

Pipeline of Operations (DAG Optimizations)
for reduced runtime as Linear Part (MatMul)
is so fast on modern hardware.

- Flash Attention

Inter-warpgroup overlapping with pingpong scheduling

Warpgroup 1 Iow]mioeum]cswoiml .[Geumlctunim]

Warpgroup 2 lcmiml ioewalosmismnl iOEMMl]GEM]‘Sd«mI
" | 4 h T

time

Intra-warpgroup overlapping of GEMM and Softmax

! | ! |
WGMMAD 0 1 2 : l N-1

Softmax 0 1 2 | i N-1
!
WGEMMA1 i 0 i 1 | i i N-2| N—1‘
i i i i i
Ll]]]]
time

https://tridao.me/blog/2024/flash3/

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |nte|@

https://tridao.me/blog/2024/flash3/

Tensor Processing Primitives (TPP)

https://arxiv.org/abs/2104.05755
https://qgithub.com/libxsmm/libxsmm

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR

intel.

8

https://arxiv.org/abs/2104.05755

All Al Framework attempt to solve M:N Challenge

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |hte|®

Some not so serious Truths

HOW STANDARDS PROUFERATE:
(62 AC CHARGERS, (HARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION:

THERE ARE
|4 COMPETING
STANDARDS.

1?7 RDIculoLs!

WE NEED To DEVELOP

ONE UNNERSAL STANDARD

THAT COVERS EVERYONES
\USE CASES. YERH!

‘ko)

SOON:

SITUATION:

THERE ARE
[5 COMPETING

STANDARDS.

Expectation
@Xnet arm
Caffe e rars B intel
@ ONNX Al Coriles S XILINX®
OPyTorch SANVIDIA
1F TensorFlow || GRAFHCORE
Keras AMDZ

ﬂ Qualcomm

Intel Labs

https://xkcd.com/927/

Reality

(’y'Inductor

Open
O % ONNX <X
PyTorch ol Ul NVIDIA.
LF@—l
OocLow

https://www.linkedin.com/posts/matthew-barrett-a49929177_i-think-its-fair-to-say-that-ml-compilation-activity-7185745237049286657-z5_Q/

intel.

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR

10

How to avoid the 15t Standard

= Co-evolve with existing frameworks (ex. PyTorch)
" Collaborate with existing compilers (ex. IREE)
=" Promote flexibility & adaptability (ex. cost models)

= Design a common rewrite semantics framework (ex. MLIR-Linalg)

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |hte|®

Bridging the Ninja

® O 3 9 3 = O —~ = O T

Intel Labs

Domain
Specific
ML
Frameworks

Our
Work

Ninja Hand
Written Code

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |nte|®

Performance Gap

Very good at generic code
Naive vectorization

Poor hardware utilization

No high-level transformations

Hard-coded pass pipelines
Baked in assumptions
Poor view into micro-architecture

Very efficient hardware utilization
Very hard to generalize
Very hard for large models

12

Scalable DL software stack

Framework (e.g. PyTorch, TensorFlow)/numPy/JAX

Framework extensions XLA

Tensor Tensor
Vendor DL Graph API Compilers Libraries (e.g.

(e.g. IREE, TPP- ATen, Eigen,
MLIR) FBGEMM)

Vendor DL primitives API MLIR Dialects

Tensor Processing Primitives (TPP) as Virtual Tensor ISA

SSE/AVX/AVX512 AMX+AVX512 NEON / SVE

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR Intel®

13

What are Tensor Processing Primitives (TPP)

= Think (BR)GEMM and 2D Operations GP x86/aarch64
= \We express every operation in 2D space + VISA TPP unit

* “Virtual Tensor Instructions”: abstraction of AVX?, AMX, Neon, SVE, XPU ° ®
e portable and future proof as SIMD-width can be SW defined CUTLASS

* Memory-to-memory “instructions” to achieve abstraction from hardware .0 @ cuTensor

* DL and HPC, everybody who loves Tensors: DL, higher-order FEM, chemistry

= Using Entity (UE) (Human or Tensorcompiler) can focus on performance in a mostly hardware-agnostic
way on:

e Quter loop schedule

Well-defined and

Data Movement

 (Outer) tensor memory layout and standardized

* (Outer) parallelization Parallelization mapping to ALUs
= True Mixed precision by design (in, out, compute) TPP
= Optimal interplay with paradigm shift clear separation
Matrix+Vector Programming -> Tensor Programming of Concerns

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |hte|® 14

https://arxiv.org/abs/2104.05755

TPP Ingredients

https://github.com/libxsmm/libxsmm

4 . .)
e Classic batch-reduce GEMM/MatMul e col/row gather/scatter/replicate
concept e transform/reorder/transpose
e Spiced up with operationson A, Band a e col/row reduce
ternary on C ' ' e col/row broadcast
e Allows for reformatting the C matrix e Unary/binary/ternary math incl. blend
L U'nary, e DL specifics (dropout, fast GeLU))
BRGEMM+ Binary,
Ternary
Equation
sparse LA .
r Trees/Graph N
¢ TPPs are memory-to-memory
* Eqn Trees allow for a post-order traversal
e Sparse LA operations, e.g. sparse GEMM fusion of BRGEMM+and
in compact formulation Una.ry/blnary/ternar_/ operatlons
« Experimental for now e Optional, UE can decide if the eqgn tree
9 L should be used)

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |nte|®

15

https://arxiv.org/abs/2104.05755
https://github.com/libxsmm/libxsmm

Anchor stone of TPPs: Ternary BRGEMM for Tensor Contractions

Algorithm 2 The batch-reduce GEMM TPP

Inputs: A?’IXK, B{O(N fori=0,..,n1,CM*N gecR
Output: C=f-C+ X" ' A; x B;

1: forip, =0...N — 1 with step n;, do

22 forip =0...M—1with step my, do

3 acc_regs < load_generic my X n; C-subblock; ;.

4: fori=0...n—1with step 1 do G

5

6

7

Tensor C Tensor A Tensor B

for iz =0...K — 1 with step k;, do
> Outer product GEMM microkernel
acc_regs += A; sub—panelim,ik X B; sub—panelik’in

e

8: C-subblock; ; store_generic acc_regs

_ _ B tiles
bcast B; subrow in 6 vec registers bcast B; subrow in 3 vec registers

£ 9 . .
c g N~ 00 N 9
c 2o £ S g =
- 5§ : 58
= 3 &
3 E 5 = (28 ks - 2
> 3 O 7] 3 0 = £
n o 9 T © o
— c = < TN < o
< —<t J Od ©
O N J =
Microkernel with 32 vector registers Microkernel with 16 vector registers Microkernel with 2D register file
(e.g. Intel with avx512, Arm Neoverse) (e.g. Intel/AMD with avx2) (e.g. Intel with AMX)

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |nte|® 16

Blueprint of Primitives via TPPs

Most of Developers (Libraries & applications)

\ Loops around Unary/Binary/Ternary/Equations of TPP

(e.g. tensor tiling, cache blocking, parallelization)

Unary/Binary/Ternary/Equation TPPs before tensor contraction

A handful of _ Tensor contraction via the ternary BRGEMM TPP
experts

Unary/Binary/Ternary/Equation TPPs after tensor contraction

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR

intel.

17

BF16 Matrix Multiplication on 56¢ SPR https://arxiv.org/pdf/2304.12576

» Specific instantiations of loop nest is governed at runtime by a single param (loop_spec_str)
e Trivial auto-tuning on the loop_spec_string — 0 lines of code change in user code

* Same code for all platforms and precisions !
auto gemm_loop = ThreadedLoop<3>({
LoopSpecs{@, Kb, k_step, {l1_k_step, 10_k_step}}, // Logical K loop specs
oneDNN GEMM does not support blocked layout for A, thus degraded performance LoopSpecs{0, Mb, m_step, {l1nm_step, 10.n_step}}, // Logical M loop specs

LoopSpecs{@, Nb, n_step, {11_n_step, 10_n_step}}}, // Logical N loop specs

loop_specs_str);
gemm_loop(

BF16 GEMM (MxNxK) on SPR (56c@2Ghz) Fn iR = indlo), 488 = indl1], A = ino(2);

1 gEaCRBR (A i_n1 (1o 01 013
60000 56412 , inllinl (0] [0));

unsigned long long brcount = k_ste
brgemm_tpp

p
(&AL[i_m] [i_k][0][@], &B[i_n][i_k][0][@], &C[i_n]l[i_m][0][@], &brcount);

53405.7
49787 52005 ’
50000 | wrote this code !!!
40000 35245.9
30671

30000

20000

10000

1024x1024x1024 2048x2048x2048 4096x4096x4096

GFLOPS

o

B TPP+ThreadedLoops ™ oneDNN

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |nte|® 18

Penguin’s Programming World

= Logically describe the loop nest

= Express the computation using the logical indices and TPP

= Resembles the for the (Al) programmer familiar CUDA/CUTLASS programming
paradigm on CPU and GPU

= Exactly the same user code for all platforms and compute precisions

= This framework naturally lends itself to auto-tuning / Al guide tuning.

= Efficient chaining of TPPs without dealing with Polish Notations and lengthy
APIs.

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |nte|@

examples/sec

BERT Large Fine-tuning Performance

BERT performance across multiple platforms/precisions

35 FP32 BERT implementations on CLX .00
2.98
3 2-89 6'00
2.5 5.00 16
.0X
g Ol 466
2 1.79 < 4.00 :
1.67 k4 :
= 1.4x :
15 £3.00 3.7x 1,6x 4 :
2 ' . :
) > 71 : 2.89 :
1 2.00 6.ASX : :
N 1.90 :
0.5 10 L : :
o1 1.10 : -
0 0.00
Hugging Faces Reference GEMMS only via TPPs all workload via TPPs hand-vectorized (avx512) BDX GRAVITON2 ROME CLX CPX ICX

Hugging Faces Reference B TPP-based implementation

= TPP based BERT matches the performance of SOTA hand-vectorized and non-portable code
= Qutperform Hugging Faces reference implementation up to 6.5x

= Multiple precisions and portable across multiple platforms without code changes

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR

5.97

CPX-BF16

intel. =»

TPP GPU Efforts @Intel

" GPU: CUTLASS for SYCL:

e https://github.com/codeplaysoftware/cutlass-fork/blob/sycl-
develop/examples/sycl/pvc/pvc bfloat dpas gemm cute.cpp

= GPU: ukernels in oneDNN (can be extended if needed)

e https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/microkernels

* SDPA (Scaled Dot Product Attention) using ukernels

* https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/ocl

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |nte|® 21

https://github.com/codeplaysoftware/cutlass-fork/blob/sycl-develop/examples/sycl/pvc/pvc_bfloat_dpas_gemm_cute.cpp
https://github.com/codeplaysoftware/cutlass-fork/blob/sycl-develop/examples/sycl/pvc/pvc_bfloat_dpas_gemm_cute.cpp
https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/microkernels
https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/ocl

TPP-Like efforts outside of Intel

GPU

= Nvidia CUTLASS
e https://github.com/NVIDIA/cutlass
= OpenAl Triton

* https://github.com/triton-lang/triton

= AMD Composable Kernels:
* https://github.com/ROCm/composable kernel
= ThunderKittens (Stanford)
* https://github.com/HazyResearch/ThunderKittens
CPU
= ARM Kleidi
* https://gitlab.arm.com/kleidi/kleidiai

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |hte|® 22

https://github.com/NVIDIA/cutlass
https://github.com/triton-lang/triton
https://github.com/ROCm/composable_kernel
https://github.com/HazyResearch/ThunderKittens
https://gitlab.arm.com/kleidi/kleidiai

TPP-MLIR

https://arxiv.org/abs/2404.15204v]
https://github.com/plaidml/tpp-mlir

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |hte|® 23

https://arxiv.org/abs/2404.15204v1

https://github.com/pytorch/pytorch/

Goal: ”clang for Al” in MLIR* https://github.com/llvm/torch-mlir
https://qgithub.com/llvm/llvm-project

Goals

» Standardizing torch->MLIR->hardware
lowering by establishing the “beaten path”
by an upstream compiler, e.g. llvm incubator
project

» Dialects, Passes, Transforms, e.g. stay in
MLIR (llvm-project) and ideally the compiler
is just the glue-code with the pass pipeline

= Compilerstarts with LinAlg as the highest-
level dialect

= Focus on x86 for now (it's everywhere), but
run on GPUs as well.

Ajgwasse 0] Bbunndwod o1joquAs

*Multi Level Intermediate Representation

only pass pipeline, no new dialect

Upstream Compiler,

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR

©

Overview

Abstraction Level

" [ngress
* Whole tensor ops StableHLO, Torch, TOSA
» Language semantics (graph) Linalg on Tensors

* Transform
* Graph sharding, placement

Linalg on Tensors
Linalg/Vector on

 Tiling, blocking, cache fusing Memrefs
* Loop reordering, k-splitting SCF, Arith, Math
* Reqgisterlevel fusing OMP
" _owering
 Optimal SIMD/SIMT code LLVM, SPIRV , XeGPU, XSMM

 Linking, Offloading forr sty Eele

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR "‘\tel® 25

Packing shapes

—
HEEN HEEREEREEREN
I=,I HEEREEREEREN
HEE EEEEEEEN
— ==I — HEEREEREEREN
HENR
HE
HENR
2D shape 4D shape Block-transpose
Mx N (MB xNB) x (mb x nb) (NB xMB) x (mb xnb)

B matrix column access becomes row access (cache-friendly), transpose is fast (block copy)
A, Band C are now on the same access pattern
O(n2) packing cost pays off with O(n3) GEMM access savings

Intel Labs — Parallel Computing Lab intel. 2¢

Parallelisation Strategies

scf.parallel has
no defined rule

Block tiles by multiple rows or columns
Still not optimal for multi-threaded

EEEEE" BN BEET" " HN EEEEEEEE EEEEEEEDE
HEEEEE BN BRI AN EEEEEEEE EEEEEEEDE
STEFEAETEE BN EEAEE TP EEEEY A EEEEEEE
HE (" BEERTH BRI T ER TP EEEEY AAEEEEEE
AEEEEEEEN EENEEFNEE EEEEEEEE EEEEEEEPE
STHENTEEE EEEEENEE TR e
CTEHEEEEEE BRI AN EEEEEEEE T TP EEEEE
TEEEEEEE BRI AN EEEEEEEE T TR EEE
Random Row / Column 2D parallel

Rectangular blocking
Multi-thread aware
Minimizes data moves

—

Intel Labs

Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads

intel.

Intel® AMX High-Level Architecture

|A Host Coprocessor |
(TMUL)

TmmO +=Tmml1* Tmm?2

Coherent
Memory

Interface Coprocessor 2

B \ew state to be managed by OS

B Commands and status delivered synchronously via TILE/acceleratorinstructions
[] Dataflow —accelerators communicate to host through memory

Intel Labs Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads |nte|@ 28

2D Parallel + AMX Tile Config Hoisting

M x N iterations
T threads

T <<MxN

Which distribution?

2D Parallel

FORALL(M,N) %
BRGEMM(A’, B, C’)
ADD(C’, bias)
ReLU(C")

$

y

FORALL(M,N) s
AMXSetup(Tm, Tn)
BRGEMM(A’, B’,C’)
ADD(C’, bias)
RelLU(C")
AMXReset(Tm, Tn)

$

FORALL (M/m,N/n) $

FOR(m) s

FOR(n)s
AMXSetup(Tm, Tn)
BRGEMM(A', B, C")
ADD(C’, bias)
RelLU(C")
AMXReset(Tm, Tn)

%

Tile Config per thread

$

S

Intel Labs

Tile Setup runs on every tile,
even if on the same thread

v

Each thread on
this distribution!

\ 4

FORALL (M/m,N/n) $
AMXSetup(Tm, Tn)
FOR(m)3$
FOR(n)s
BRGEMM(A', B, C")
ADD(C’, bias)
RelLU(C")
$
$
AMXReset(Tm, Tn)
S

v
Each thread on
this distribution!

Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads

One setup
perthread

One reset
per thread

intel.

29

GEMM on Intel Max GPU (Ponte Vecchio / PVC)

GEMM to GPU Work- and Subgroups GEMM Subgroup tile as Systolic Array tiles

Extract | SG

SG SG Slice Load

Load Load

Extract Extract
Slice Slice

v . v

Extract SG
€ Sjice 7] Load

SG
Store

1
1
1
1
1 5
1 " .
' 1
1 - 4o
' ~. 1
~
1 T~ 1
1 ~.
' .
1 - 1
1 .
' 1
1
1
1
1

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR "'\tel® 30

TPP-MLIR -- Multi-Threaded BF16 (IR gen, pre-packed 4D)

OpenMP BF16 Scalability on ¢7g (Gvt3)

20000
18000
16000
14000
O 12000
9 10000
é 8000
6000
4000

13.93.7 1393.7
2000 92020 3.94.0
P --

7677 II 7677 II
2

Threads Threads Threads Threads Threads Threads Threads Threads
GEMM GEMM GEMM GEMM MLP MLP MLP MLP

Workload

2020 3.94.0
-—— --

mLIBXMM-DNN mTPP-MLIR

2
o
@]

'
(TR
G}

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0

OpenMP BF16 Scalability on c7a (Zen4)

1575.4 15.15.4
2020 %4040
—— Il |

8079 II 8080 II
2

Threads Threads Threads Threads Threads Threads Threads Threads
GEMM GEMM GEMM GEMM MLP MLP MLP MLP

Woarkload

20920 4040
—— --

uLIBXMM-DNN = TPP-MLIR

v
o
O
-
L
0

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0

OpenMP BF16 Scalability on ¢7i (SPR)
10134.0 10544
5.88.0

5483
3143 3143
1?22 1721

Threads Threads Threads Threads Threads Threads Threads Threads
GEMM GEMM GEMM GEMM MLP MLP MLP MLP

Workload

uLIBXMM-DNN = TPP-MLIR

e 2D parallelization using optimal blocking depending on the number of threads
* Almost perfect scalability on Zen4, good scalability on Graviton 3
* SPR shows the same final performance as Ninja-Coded applicaitons

Intel Labs

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR

intel.

GFLOPS

TPP-MLIR Intel Max GPU Performance GEMM FP16

GEMM M=128
PVC GPU Max 1100

TPP DEFAULTS B TPP FINETUNED

80000.00
70000.00

1024 2048 4096
N=K SIZE

= GEMM kernel tuning parameters

60000.00

50000.00

40000.00

30000.00

20000.00

10000.00 I
0.00

8192

GEMM M=256
PVC GPU Max 1100

TPP DEFAULTS B TPP FINETUNED
140000.00
120000.00
100000.00

80000.00

GFLOPS
GFLOPS

60000.00

40000.00
20000.00 I
0.00

1024 2048 4096 8192
N=K SIZE

* Workgroup tile sizes — default: 128x128 — used tuning values: 64, 128, 256

* Subgroup tile sizes — default: 32x32 — used tuning values: 16, 32, 64

* Reduction dimension tiling — default: 32 — used tuning values: 16, 32, 64

= Kernel parameter selection is crucial for good performance

* Requires cost model and heuristics

= Lowering allows for quick GEMM kernel finetuning

Intel Labs

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR

140000.00
120000.00
100000.00
80000.00
60000.00
40000.00
20000.00

0.00

GEMM M=512
PVC GPU Max 1100

TPP DEFAULTS mTPP FINETUNED

1024 2048 4096 8192
N=K SIZE

intel.

32

Triton-CPU with TPP

https://github.com/plaidml/triton-cpu

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |hte|® 33

Triton-CPU Pipeline

Python > PyTorch > OneDNN
Benchmark XSMM lowering Vector still used for basic
path operations like loads/stores
\\
Triton —> Triton IR —> Vector

libxsm

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |hte|® 34

Performance — 5t" Gen Xeon

SPR - F32 - Single core

140
120
100
80
60
40
20

GFLOPS

256 384 512 640 768 896 1024115212801408153616641792192020482176230424322560
M=N=K

SPR - BF16 - Single core

1000
800
600
400

GFLOPS

200

Intel Labs

256 384 512 640 768 896 1024115212801408153616641792192020482176230424322560

e PyTorch native

Triton v1 scalar

XSMM scalar

XSMM pad-K

= e = XSMM external-pad

M=N=K

e PyToOrch compile
Triton v1 block
XSMM block

XSMM loop-collapse-pad-B

GFLOPS

6000
5000
4000
3000
2000
1000

SPR - F32 - Multicore

256 384 512 640 768 896 1024115212801408153616641792192020482176230424322560
M=N=K

SPR - BF16 - Multicore

30000
25000
20000
15000
10000

5000

GFLOPS

256 384 512 640 768 896 1024115212801408153616641792192020482176230424322560

e PyTorch native

Triton v1 scalar

XSMM scalar

XSMM pad-K

= = = XSMM external-pad

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR

M=N=K

e PyTOrch compile

Triton v1 block

XSMM block

XSMM loop-collapse-pad-B

intel.

35

What is needed for high performance Triton-CPU

» Robustand performantinfrastructure
= Efficient representation and/orimplementation of basic operations e.qg., data transfers
= Userand compiler cooperation e.qg., high-performance vectorizer
» Dense memory representation
o Block pointers essential to map to ukernelsin a plug-n-play fashion
» Reduction loop collapsing
o Reconstruct full K dim from tiling loop

o Whole GEMM loop as a single BRGEMM kernel: amortize overhead of tile configs in case of AMX, avoid multiple C load & stores, enables
effective SW-pipeline opportunities within the ukernel (e.g. to vnni-format weight matrix within the ukernel with minimal overhead)

= Microkernels

o Feasi)ble path for quick results = for all precisions supported in ukernel (see Triton CPU vl which is substantially slower for FP32 than
BF16

o Bridginginterface mismatch — vector vs memref —is expensive
» Eliminate the power-of-2 size restrictionsin Triton
o Large power-of-2 leading dimensions cause excessive number of cache conflict misses that plummet performance (cache trashing)

o Obviates the need for padding (happening a/ways now,) that is not needed algorithmically and hinders performance (unless the real
GEMM dimensions are large powers-of-2 where padding is optimization)

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |nte|® 36

Conclusions

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR Intelo 37

Conclusions

= Even the high-level abstraction will map directly to TPP without issues on CPU and GPU

= Software and Ease of Use is most challenged with speeding up MatMul in hardware
 How to make sure the non-linear portion is not holding us back (same for digital and optical)

* Not covered here: scaling to trillions of parameters requires very large systems
(communication/sharding) in all cases

= We should all thrive for an upstream & community owned compiler, ala “clang for Al”

= Notable papers for how to program Intel systems
* https://arxiv.org/abs/2104.05755
 https://arxiv.org/pdf/2304.12576
* https://arxiv.org/abs/2404.15204v1

Intel Labs From Tensor Processing Primitive towards Tensor Compilers using upstream MLIR |nte|® 38

https://arxiv.org/abs/2104.05755
https://arxiv.org/pdf/2304.12576
https://arxiv.org/abs/2404.15204v1

Intel.

	Slide 1: From Tensor Processing Primitives towards Tensor Compilers using upstream MLIR
	Slide 2: Disclaimer
	Slide 3: Outline
	Slide 4: Motivation – Parallel Computing Lab Charter
	Slide 5: Hardware/Software Co-Design – the next 1000x
	Slide 6: Algorithmic Challenges – Amdahl's Law
	Slide 7: Fused Building Blocks: Attention
	Slide 8: Tensor Processing Primitives (TPP)
	Slide 9: All AI Framework attempt to solve M:N Challenge
	Slide 10: Some not so serious Truths
	Slide 11: How to avoid the 15th Standard
	Slide 12: Bridging the Ninja Performance Gap
	Slide 13: Scalable DL software stack
	Slide 14: What are Tensor Processing Primitives (TPP)
	Slide 15: TPP Ingredients
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Penguin’s Programming World
	Slide 20: BERT Large Fine-tuning Performance
	Slide 21: TPP GPU Efforts @Intel
	Slide 22: TPP-Like efforts outside of Intel
	Slide 23: TPP-MLIR
	Slide 24: Goal: “clang for AI” in MLIR*
	Slide 25: Overview
	Slide 26: Packing shapes
	Slide 27: Parallelisation Strategies
	Slide 28: Intel® AMX High-Level Architecture
	Slide 29: 2D Parallel + AMX Tile Config Hoisting
	Slide 30: GEMM on Intel Max GPU (Ponte Vecchio / PVC)
	Slide 31: TPP-MLIR -- Multi-Threaded BF16 (IR gen, pre-packed 4D)
	Slide 32: TPP-MLIR Intel Max GPU Performance GEMM FP16
	Slide 33: Triton-CPU with TPP
	Slide 34: Triton-CPU Pipeline
	Slide 35: Performance – 5th Gen Xeon
	Slide 36: What is needed for high performance Triton-CPU
	Slide 37: Conclusions
	Slide 38: Conclusions
	Slide 39

