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Disclaimer

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. 
Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process. 

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will 
affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete 
information about performance and benchmark results, visit http://www.intel.com/performance.

Some results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling and provided to you for 
informational purposes.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web 
site and confirm whether referenced data are accurate.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be 
claimed as the property of others. © 2024 Intel Corporation.

http://www.intel.com/performance
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Outline

▪Motivation & Parallel Computing Lab Charter

▪ Tensor Processing Primitives - TPP (micro-kernels for hardware 
abstraction)

• CPU

• GPU ukernel and CUTLASS efforts

▪ TPP-MLIR for CPU & GPU (a compiler based on standard micro-kernel 
abstraction)

▪ Triton-CPU accelerated by TPP

▪ Summary
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Motivation – Parallel Computing Lab Charter
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Hardware/Software Co-Design – the next 1000x
▪We are no longer getting higher frequencies

▪ The only way forward is more cores and even these avenues start to fall 
off the die size cliff -> wafer-scale, packaging, interconnect

▪ Architectural Innovation is more important than ever

▪ Portable, Automated programming, e.g. DSL/JITs

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://newsroom.intel.com/press-kits/intel-labs-day-2020/

Algorithm Implementation Hardware

Classic

Feedback Loop

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://newsroom.intel.com/press-kits/intel-labs-day-2020/
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Algorithmic Challenges – Amdahl's Law
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Fused Building Blocks: Attention
▪ Fuse transposes with 

GEMM compute

• Avoid explicit matrix 
transpose on input

• Fuse it in BRGEMM kernel 
(B-trans)

• If required, perform it on 
output matrix

▪ Fuse 
Scale/Dropout/Softmax/
Mask

• Operation performed on 
block of output

• Local to given thread

• Suitable for tensor-ISA 
implementation

Pipeline of Operations (DAG Optimizations)
for reduced runtime as Linear Part (MatMul)
is so fast on modern hardware.
→ Flash Attention

https://tridao.me/blog/2024/flash3/

https://tridao.me/blog/2024/flash3/
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Tensor Processing Primitives (TPP)
https://arxiv.org/abs/2104.05755

https://github.com/libxsmm/libxsmm

https://arxiv.org/abs/2104.05755
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All AI Framework attempt to solve M:N Challenge

DLRM Conv LLMGNNDNN

TensorFlow PyTorch ONNX

TPU NPU IPUGPUCPU

Black Magic

…
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Some not so serious Truths

https://xkcd.com/927/

https://www.linkedin.com/posts/matthew-barrett-a49929177_i-think-its-fair-to-say-that-ml-compilation-activity-7185745237049286657-z5_Q/
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How to avoid the 15th Standard

▪ Co-evolve with existing frameworks (ex. PyTorch)

▪ Collaborate with existing compilers (ex. IREE)

▪ Promote flexibility & adaptability (ex. cost models)

▪ Design a common rewrite semantics framework (ex. MLIR-Linalg)
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Bridging the Ninja Performance Gap

Traditional
Compilers

Domain 
Specific

ML 
Frameworks

Ninja Hand
Written Code

Very good at generic code
Naïve vectorization
Poor hardware utilization
No high-level transformations

Hard-coded pass pipelines
Baked in assumptions
Poor view into micro-architecture

Very efficient hardware utilization
Very hard to generalize
Very hard for large models

Our
Work
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Tensor Processing Primitives (TPP) as Virtual Tensor ISA

SSE/AVX/AVX512 AMX+AVX512 NEON / SVE Accelerator

Vendor DL primitives API

Vendor DL Graph API

XLA

Tensor 
Compilers      

(e.g. IREE, TPP-
MLIR)

MLIR Dialects

Tensor 
Libraries (e.g.
ATen, Eigen, 
FBGEMM)

Framework extensions  

Framework (e.g. PyTorch, TensorFlow)/numPy/JAX

Scalable DL software stack
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What are Tensor Processing Primitives (TPP)
▪ Think (BR)GEMM and 2D Operations

▪ We express every operation in 2D space 

• “Virtual Tensor Instructions”: abstraction of AVX?, AMX, Neon, SVE, XPU

• portable and future proof as SIMD-width can be SW defined

• Memory-to-memory “instructions” to achieve abstraction from hardware

• DL and HPC, everybody who loves Tensors: DL, higher-order FEM, chemistry

▪ Using Entity (UE) (Human or Tensorcompiler) can focus on performance in a mostly hardware-agnostic 
way on:

• Outer loop schedule

• (Outer) tensor memory layout

• (Outer) parallelization

▪ True Mixed precision by design (in, out, compute)

▪ Optimal interplay with paradigm shift

Matrix+Vector Programming -> Tensor Programming 

Data Movement 

and 

Parallelization

Well-defined and 

standardized 

mapping to ALUs

UE TPP

clear separation
of Concerns

GP x86/aarch64 

+ vISA TPP unit

CUTLASS

cuTensor
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TPP Ingredients

• TPPs are memory-to-memory
• Eqn Trees allow for a post-order traversal 

fusion of BRGEMM+ and 
Unary/binary/ternary operations

• Optional, UE can decide if the eqn tree 
should be used

• Sparse LA operations, e.g. sparse GEMM 
in compact formulation

• Experimental for now

• col/row gather/scatter/replicate

• transform/reorder/transpose

• col/row reduce

• col/row broadcast

• Unary/binary/ternary math incl. blend

• DL specifics (dropout, fast GeLU)

• Classic batch-reduce GEMM/MatMul
concept

• Spiced up with operations on A, B and  a 
ternary on C

• Allows for reformatting the C matrix

BRGEMM+
Unary, 
Binary, 
Ternary

Equation 
Trees/Graph

sparse LA

Well-defined and physical ISA independent

https://arxiv.org/abs/2104.05755
https://github.com/libxsmm/libxsmm

https://arxiv.org/abs/2104.05755
https://github.com/libxsmm/libxsmm
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Anchor stone of TPPs: Ternary BRGEMM for Tensor Contractions

SC’19, November 2019, Denver, CO, USA E. Georganas et al.

operations that arise in DL workloads, whereas its semantics lend

themselves to various optimizations (e.g. load/store optimizations

of the result sub-tensor, prefetching of the sub-tensors to be multi-

plied). Also, since thekernel supportsoperations at negranularity,

fusion of subsequent operators on the output sub-blocks is inher-

ently e cient. The blue line in Figure 1 shows the performance

of the convolution primitive that leverages our new batch-reduce

GEMM kernel achieving averagee ciency of 83%, and outperforms

even the ad hoc, vendor-optimized kernel.

Having a single kernel as basic building-block is transformative:

by implementing and optimizing this single kernel for a given

architecture, thedevelopment of DL primitivesdegenerates to mere

loop tuning around this kernel. Essentially our approach with a

single kernel addresses the issue of combinatorial explosion of low-

level optimization work that is required for each pair <architecture,

DL primitive>. Instead, for each architecture we need to optimize

at low-level only onekernel for all DL primitives.

Furthermore, having a single, highly e cient building-block

enables e cient usage of tensor compiler frameworks. Such frame-

worksembracetensorsas rst classcitizens, and providespeci cop-

timization techniques targeting tensor algebra programs. Since DL

primitives are inherently tensor algebra programs, there is a large

amount of ongoing research that leverages specialized tensor com-

pilers for DL workload development (e.g. TVM [20], GLOW [21],

PlaidML [22], MLIR [23]). However, compilers struggle to optimize

small GEMM- avored loop nests that arise in tensor programs [24].

Contemporary architectures become increasingly complex, and all

the micro-architectural idiosyncrasies have to be considered in or-

der to achieve close-to-peak performance. Our kernel is optimized

for the nuances of the architecture at hand, and serves tensor com-

pilersarobust building block that can beused during thepolyhedral

optimization phase of general loop nests [22, 25].

To illustrate theviability and generality of our methodology with

a single kernel, wedevelop DL primitiveswhich target training and

inference of RNN/LSTM, CNN and MLP workloads in⇠3,000 lines

of high-level C code. Our primitives outperform vendor-optimized

libraries on CPUs. We also provide proof-of-concept design with

a tensor compiler framework by showcasing e cient CNN imple-

mentation in TVM that leverages our batch-reduce GEMM kernel.

Additionally, our methodology providesapathway for performance

portability; we present exemplary, high-performance CNN kernels

on integrated GPUs. Last but not least, we integrate our primitives

in distributed DL frameworks (Tensor ow [26] and GxM [27]), and

show performanceresultson two training workloads: Google’sNeu-

ral Machine Translation (GNMT) [5] and ResNet-50 training [28].

These results push the envelope of DL training performance on

CPU clusters. The main contributions of this paper are:

• The introduction of the batch-reduce GEMM kernel along with

its e cient implementation.

• The design and implementation of multi-threaded, high per-

formance DL primitives covering RNN/LSTM, CNN and MLP

inference and training algorithms with batch-reduce GEMM

kernel being the basic building block. We need to optimize at

low-level only thiskernel for all DL primitives.

• A detailed performance comparison of our DL primitives with

state-of-the-art vendor-optimized libraries.
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Figure 2: (a) The batch-reduce GEMM kernel (b) Outer prod-

uct smal l GEMM microkernel

Algori thm 1 The batch-reduce GEMM kernel

Inputs:Ai 2 IRm⇥k ,Bi 2 IRk⇥n i = 0, ..., N-1,Cj 2 IRm⇥n α,β 2 IR

Output : Cj = β ·Cj + α
P N−1

i =0 Ai ·Bi

1: for in = 0. . .n − 1 with step nb do

2: for im = 0. . .m − 1 with step mb do

3: acc_regs  load mb ⇥nb Cj subblockim , i n

4: for i = 0. . . N − 1 with step 1 do

5: for ik = 0. . .k − 1 with step 1 do

6: . Outer product GEMM microkernel

7: acc_regs += Ai subcolumnim , i k
⇥Bi subrowi k , i n

8: Cj subblocki m , i n  acc_regs

• Distributed memory results of LSTM and CNN training work-

loads that leverage our optimized DL kernels and outperform

the best in class results on CPU clusters.

• CNN proof-of-concept results on integrated GPUs and CNN ker-

nels within TVM that leverage the batch-reduce GEMM kernel.

2 THE BATCH-REDUCE GEMM KERNEL

In this section, we describe the design and implementation of the

new batch-reduce GEMM kernel which comprises the cornerstone

of our deep learning primitives. Figure 2 (a) illustrates the function-

ality of the new kernel which materializes the operation:

Cj = β ·Cj + α

N−1X

i =0

Ai ·Bi

This kernel multiplies the speci ed blocks Ai 2 IRm⇥k and Bi 2

IRk⇥n and reduces the partial results to a block Cj 2 IRm⇥n of a

tensor C. TensorsA and B can alias and also the blocksAi and Bi

can reside in any position in the input tensors A and B. The batch-

reduce GEMM kernel takes the following arguments: (i) two arrays

of pointers to the corresponding blocksAi and Bi to be multiplied,

(ii) apointer to theoutput block Cj , (iii) thenumber N of theblocks

to be multiplied and (iv) the scaling parametersα and β.

Our kernel di ersfrom therecently introducedbatchedGEMM [19]

and its variation strided-batch-gemm [29] that materialize:
Ci = β ·Ci + α ·Ai ·Bi

These batched routines are missing the reduction functionality and

cannot optimize for the output matrix re-use. Also, the strided-

batch-gemm kernel accesses the Ai and Bi subblocks based on

xed strides and therefore is more restrictive.

The new batch-reduce GEMM kernel speci cation naturally

lends itself to a handful of optimizations. First, this kernel min-

imizes the output data movement compared to GEMM or batched
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C
j
a
c
c
u
m

u
la

to
rs

 i
n
 

1
2
 v

e
c
to

r 
re

g
is

te
rs

Microkernel with 16 vector registers
(e.g. Intel/AMD with avx2)

Microkernel with 2D register file
(e.g. Intel with AMX)

Microkernel with 32 vector registers
(e.g. Intel with avx512, Arm Neoverse)
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Blueprint of Primitives via TPPs

Loops around Unary/Binary/Ternary/Equations of TPP

(e.g. tensor tiling, cache blocking, parallelization)

Unary/Binary/Ternary/Equation TPPs before tensor contraction

Tensor contraction via the ternary BRGEMM TPP

Unary/Binary/Ternary/Equation TPPs after tensor contraction

A handful of
experts

Most of Developers (Libraries & applications)
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BF16 Matrix Multiplication on 56c SPR
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BF16 GEMM (MxNxK) on SPR (56c@2Ghz)

TPP+ThreadedLoops oneDNN

• Specific instantiations of loop nest is governed at runtime by a single param (loop_spec_str)

• Trivial auto-tuning on the loop_spec_string – 0 lines of code change in user code

• Same code for all platforms and precisions !

• oneDNN GEMM does not support blocked layout for A, thus degraded performance 

I wrote this code !!!

https://arxiv.org/pdf/2304.12576
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Penguin’s Programming World

▪ Logically describe the loop nest

▪ Express the computation using the logical indices and TPP

▪ Resembles the for the (AI) programmer familiar CUDA/CUTLASS programming 
paradigm on CPU and GPU

▪ Exactly the same user code for all platforms and compute precisions

▪ This framework naturally lends itself to auto-tuning / AI guide tuning.

▪ Efficient chaining of TPPs without dealing with Polish Notations and lengthy 
APIs.
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▪ TPP based BERT matches the performance of SOTA hand-vectorized and non-portable code

▪ Outperform Hugging Faces reference implementation up to 6.5x 

▪ Multiple precisions and portable across multiple platforms without code changes

BERT Large Fine-tuning Performance
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TPP GPU Efforts @Intel

▪GPU: CUTLASS for SYCL: 

• https://github.com/codeplaysoftware/cutlass-fork/blob/sycl-
develop/examples/sycl/pvc/pvc_bfloat_dpas_gemm_cute.cpp

▪GPU: ukernels in oneDNN (can be extended if needed)

• https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/microkernels

• SDPA (Scaled Dot Product Attention) using ukernels

• https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/ocl

https://github.com/codeplaysoftware/cutlass-fork/blob/sycl-develop/examples/sycl/pvc/pvc_bfloat_dpas_gemm_cute.cpp
https://github.com/codeplaysoftware/cutlass-fork/blob/sycl-develop/examples/sycl/pvc/pvc_bfloat_dpas_gemm_cute.cpp
https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/microkernels
https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/ocl
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TPP-Like efforts outside of Intel

GPU

▪ Nvidia CUTLASS

• https://github.com/NVIDIA/cutlass

▪ OpenAI Triton

• https://github.com/triton-lang/triton

▪ AMD Composable Kernels: 

• https://github.com/ROCm/composable_kernel

▪ ThunderKittens (Stanford)

• https://github.com/HazyResearch/ThunderKittens

CPU

▪ ARM Kleidi

• https://gitlab.arm.com/kleidi/kleidiai

https://github.com/NVIDIA/cutlass
https://github.com/triton-lang/triton
https://github.com/ROCm/composable_kernel
https://github.com/HazyResearch/ThunderKittens
https://gitlab.arm.com/kleidi/kleidiai
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TPP-MLIR
https://arxiv.org/abs/2404.15204v1

https://github.com/plaidml/tpp-mlir

https://arxiv.org/abs/2404.15204v1
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Goal: “clang for AI” in MLIR*

Goals

▪ Standardizing torch->MLIR->hardware 
lowering by establishing the “beaten path” 
by an upstream compiler, e.g. llvm incubator 
project

▪ Dialects, Passes, Transforms, e.g. stay in 
MLIR (llvm-project) and ideally the compiler 
is just the glue-code with the pass pipeline

▪ Compiler starts with LinAlg as the highest-
level dialect

▪ Focus on x86 for now (it’s everywhere), but
run on GPUs as well.
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https://github.com/pytorch/pytorch/

https://github.com/llvm/torch-mlir

https://github.com/llvm/llvm-project
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Overview

▪ Ingress

• Whole tensor ops

• Language semantics (graph)

▪ Transform

• Graph sharding, placement

• Tiling, blocking, cache fusing

• Loop reordering, k-splitting

• Register level fusing

▪ Lowering

• Optimal SIMD/SIMT code

• Linking, Offloading

StableHLO, Torch, TOSA

Linalg on Tensors

Linalg on Tensors 
Linalg/Vector on 
Memrefs
SCF, Arith, Math
OMP

LLVM, SPIRV , XeGPU, XSMM 
for library calls

Abstraction Level
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Packing shapes

2D shape
M x N

4D shape
(MB x NB) x (mb x nb)

Block-transpose
(NB x MB) x (mb x nb)

B matrix column access becomes row access (cache-friendly), transpose is fast (block copy)
A, B and C are now on the same access pattern

O(n2) packing cost pays off with O(n3) GEMM access savings
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Parallelisation Strategies

Random
scf.parallel has
no defined rule

2D parallel
Rectangular blocking
Multi-thread aware
Minimizes data moves

Increased cache awareness

Row / Column
Block tiles by multiple rows or columns
Still not optimal for multi-threaded
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Intel® AMX High-Level Architecture

IA Host

Coherent 
Memory 
Interface

tmm0
tmm1

tmm[n-1]

Coprocessor 1

(TMUL)

Tmm0 += Tmm1 * Tmm2

Coprocessor 2

TILES and 
coprocessor 
commands

Commands and status delivered synchronously via TILE/accelerator instructions

Dataflow – accelerators communicate to host through memory

New state to be managed by OS

TILECONFIG
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2D Parallel + AMX Tile Config Hoisting

FORALL (M, N) {
BRGEMM(A’, B’, C’) 
ADD(C’, bias)
ReLU(C’)

}

M x N iterations
T threads

T << M x N

Which distribution?

FORALL (M, N) {
AMXSetup(Tm, Tn)
BRGEMM(A’, B’, C’)
ADD(C’, bias)
ReLU(C’)
AMXReset(Tm, Tn)
}

FORALL (M/m, N/n) {
FOR (m) {
FOR (n) {

AMXSetup(Tm, Tn)
BRGEMM(A’, B’, C’)
ADD(C’, bias)
ReLU(C’)
AMXReset(Tm, Tn)
}

}
}

Tile Setup runs on every tile,
even if on the same thread

2D Parallel Tile Config per thread

Each thread on
this distribution!

FORALL (M/m, N/n) {
AMXSetup(Tm, Tn)
FOR (m) {

FOR (n) {
BRGEMM(A’, B’, C’)
ADD(C’, bias)
ReLU(C’)

}
}
AMXReset(Tm, Tn)
}

Each thread on
this distribution!

One setup
per thread

One reset
per thread
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GEMM on Intel Max GPU (Ponte Vecchio / PVC)

GEMM to GPU Work- and Subgroups GEMM Subgroup tile as Systolic Array tiles
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TPP-MLIR -- Multi-Threaded BF16 (IR gen, pre-packed 4D)

• 2D parallelization using optimal blocking depending on the number of threads
• Almost perfect scalability on Zen4, good scalability on Graviton 3
• SPR shows the same final performance as Ninja-Coded applicaitons
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TPP-MLIR Intel Max GPU Performance GEMM FP16
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▪ GEMM kernel tuning parameters

• Workgroup tile sizes – default: 128x128 – used tuning values: 64, 128, 256

• Subgroup tile sizes – default: 32x32 – used tuning values: 16, 32, 64

• Reduction dimension tiling – default: 32 – used tuning values: 16, 32, 64

▪ Kernel parameter selection is crucial for good performance

• Requires cost model and heuristics

▪ Lowering allows for quick GEMM kernel finetuning
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Triton-CPU with TPP
https://github.com/plaidml/triton-cpu
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Triton-CPU Pipeline

Benchmark XSMM lowering 
path

Vector still used for basic 
operations like loads/stores
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Performance – 5th Gen Xeon
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What is needed for high performance Triton-CPU

▪ Robust and performant infrastructure

▪ Efficient representation and/or implementation of basic operations e.g., data transfers

▪ User and compiler cooperation e.g., high-performance vectorizer

▪ Dense memory representation

o Block pointers essential to map to ukernels in a plug-n-play fashion

▪ Reduction loop collapsing

o Reconstruct full K dim from tiling loop

o Whole GEMM loop as a single BRGEMM kernel: amortize overhead of tile configs in case of AMX, avoid multiple C load & stores, enables 
effective SW-pipeline opportunities within the ukernel (e.g. to vnni-format weight matrix within the ukernel with minimal overhead)

▪ Microkernels

o Feasible path for quick results → for all precisions supported in ukernel (see Triton CPU v1 which is substantially slower for FP32 than 
BF16)

o Bridging interface mismatch – vector vs memref – is expensive

▪ Eliminate the power-of-2 size restrictions in Triton

o Large power-of-2 leading dimensions cause excessive number of cache conflict misses that plummet performance (cache trashing)

o Obviates the need for padding (happening always now) that is not needed algorithmically and hinders performance (unless the real 
GEMM dimensions are large powers-of-2 where padding is optimization)
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Conclusions
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Conclusions

▪ Even the high-level abstraction will map directly to TPP without issues on CPU and GPU

▪ Software and Ease of Use is most challenged with speeding up MatMul in hardware

• How to make sure the non-linear portion is not holding us back (same for digital and optical)

• Not covered here: scaling to trillions of parameters requires very large systems 
(communication/sharding) in all cases

▪ We should all thrive for an upstream & community owned compiler, ala “clang for AI”

▪ Notable papers for how to program Intel systems

• https://arxiv.org/abs/2104.05755

• https://arxiv.org/pdf/2304.12576

• https://arxiv.org/abs/2404.15204v1

https://arxiv.org/abs/2104.05755
https://arxiv.org/pdf/2304.12576
https://arxiv.org/abs/2404.15204v1
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