
From Tensor Processing Primitives towards
Tensor Compilers using upstream MLIR

AI on Intel

Alexander Heinecke

Intel Fellow, Intel Parallel Computing Lab

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 2

Disclaimer

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Intel processors of the same SKU may vary in frequency or power as a result of natural variability in the production process.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will
affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete
information about performance and benchmark results, visit http://www.intel.com/performance.

Some results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling and provided to you for
informational purposes.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web
site and confirm whether referenced data are accurate.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others. © 2024 Intel Corporation.

http://www.intel.com/performance

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 3

Outline

▪Motivation & Parallel Computing Lab Charter

▪ Tensor Processing Primitives - TPP (micro-kernels for hardware
abstraction)

• CPU

• GPU ukernel and CUTLASS efforts

▪ TPP-MLIR for CPU & GPU (a compiler based on standard micro-kernel
abstraction)

▪ Triton-CPU accelerated by TPP

▪ Summary

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 4

Motivation – Parallel Computing Lab Charter

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 5

Hardware/Software Co-Design – the next 1000x
▪We are no longer getting higher frequencies

▪ The only way forward is more cores and even these avenues start to fall
off the die size cliff -> wafer-scale, packaging, interconnect

▪ Architectural Innovation is more important than ever

▪ Portable, Automated programming, e.g. DSL/JITs

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://newsroom.intel.com/press-kits/intel-labs-day-2020/

Algorithm Implementation Hardware

Classic

Feedback Loop

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://newsroom.intel.com/press-kits/intel-labs-day-2020/

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 6

Algorithmic Challenges – Amdahl's Law

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 7

Fused Building Blocks: Attention
▪ Fuse transposes with

GEMM compute

• Avoid explicit matrix
transpose on input

• Fuse it in BRGEMM kernel
(B-trans)

• If required, perform it on
output matrix

▪ Fuse
Scale/Dropout/Softmax/
Mask

• Operation performed on
block of output

• Local to given thread

• Suitable for tensor-ISA
implementation

Pipeline of Operations (DAG Optimizations)
for reduced runtime as Linear Part (MatMul)
is so fast on modern hardware.
→ Flash Attention

https://tridao.me/blog/2024/flash3/

https://tridao.me/blog/2024/flash3/

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 8

Tensor Processing Primitives (TPP)
https://arxiv.org/abs/2104.05755

https://github.com/libxsmm/libxsmm

https://arxiv.org/abs/2104.05755

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 9

All AI Framework attempt to solve M:N Challenge

DLRM Conv LLMGNNDNN

TensorFlow PyTorch ONNX

TPU NPU IPUGPUCPU

Black Magic

…

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 10

Some not so serious Truths

https://xkcd.com/927/

https://www.linkedin.com/posts/matthew-barrett-a49929177_i-think-its-fair-to-say-that-ml-compilation-activity-7185745237049286657-z5_Q/

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 11

How to avoid the 15th Standard

▪ Co-evolve with existing frameworks (ex. PyTorch)

▪ Collaborate with existing compilers (ex. IREE)

▪ Promote flexibility & adaptability (ex. cost models)

▪ Design a common rewrite semantics framework (ex. MLIR-Linalg)

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 12

Bridging the Ninja Performance Gap

Traditional
Compilers

Domain
Specific

ML
Frameworks

Ninja Hand
Written Code

Very good at generic code
Naïve vectorization
Poor hardware utilization
No high-level transformations

Hard-coded pass pipelines
Baked in assumptions
Poor view into micro-architecture

Very efficient hardware utilization
Very hard to generalize
Very hard for large models

Our
Work

P

e

r

f

o

r

m

a

n

c

e

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 13

Tensor Processing Primitives (TPP) as Virtual Tensor ISA

SSE/AVX/AVX512 AMX+AVX512 NEON / SVE Accelerator

Vendor DL primitives API

Vendor DL Graph API

XLA

Tensor
Compilers

(e.g. IREE, TPP-
MLIR)

MLIR Dialects

Tensor
Libraries (e.g.
ATen, Eigen,
FBGEMM)

Framework extensions

Framework (e.g. PyTorch, TensorFlow)/numPy/JAX

Scalable DL software stack

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 14

What are Tensor Processing Primitives (TPP)
▪ Think (BR)GEMM and 2D Operations

▪ We express every operation in 2D space

• “Virtual Tensor Instructions”: abstraction of AVX?, AMX, Neon, SVE, XPU

• portable and future proof as SIMD-width can be SW defined

• Memory-to-memory “instructions” to achieve abstraction from hardware

• DL and HPC, everybody who loves Tensors: DL, higher-order FEM, chemistry

▪ Using Entity (UE) (Human or Tensorcompiler) can focus on performance in a mostly hardware-agnostic
way on:

• Outer loop schedule

• (Outer) tensor memory layout

• (Outer) parallelization

▪ True Mixed precision by design (in, out, compute)

▪ Optimal interplay with paradigm shift

Matrix+Vector Programming -> Tensor Programming

Data Movement

and

Parallelization

Well-defined and

standardized

mapping to ALUs

UE TPP

clear separation
of Concerns

GP x86/aarch64

+ vISA TPP unit

CUTLASS

cuTensor

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 15

TPP Ingredients

• TPPs are memory-to-memory
• Eqn Trees allow for a post-order traversal

fusion of BRGEMM+ and
Unary/binary/ternary operations

• Optional, UE can decide if the eqn tree
should be used

• Sparse LA operations, e.g. sparse GEMM
in compact formulation

• Experimental for now

• col/row gather/scatter/replicate

• transform/reorder/transpose

• col/row reduce

• col/row broadcast

• Unary/binary/ternary math incl. blend

• DL specifics (dropout, fast GeLU)

• Classic batch-reduce GEMM/MatMul
concept

• Spiced up with operations on A, B and a
ternary on C

• Allows for reformatting the C matrix

BRGEMM+
Unary,
Binary,
Ternary

Equation
Trees/Graph

sparse LA

Well-defined and physical ISA independent

https://arxiv.org/abs/2104.05755
https://github.com/libxsmm/libxsmm

https://arxiv.org/abs/2104.05755
https://github.com/libxsmm/libxsmm

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 16

Anchor stone of TPPs: Ternary BRGEMM for Tensor Contractions

SC’19, November 2019, Denver, CO, USA E. Georganas et al.

operations that arise in DL workloads, whereas its semantics lend

themselves to various optimizations (e.g. load/store optimizations

of the result sub-tensor, prefetching of the sub-tensors to be multi-

plied). Also, since thekernel supportsoperations at negranularity,

fusion of subsequent operators on the output sub-blocks is inher-

ently e cient. The blue line in Figure 1 shows the performance

of the convolution primitive that leverages our new batch-reduce

GEMM kernel achieving averagee ciency of 83%, and outperforms

even the ad hoc, vendor-optimized kernel.

Having a single kernel as basic building-block is transformative:

by implementing and optimizing this single kernel for a given

architecture, thedevelopment of DL primitivesdegenerates to mere

loop tuning around this kernel. Essentially our approach with a

single kernel addresses the issue of combinatorial explosion of low-

level optimization work that is required for each pair <architecture,

DL primitive>. Instead, for each architecture we need to optimize

at low-level only onekernel for all DL primitives.

Furthermore, having a single, highly e cient building-block

enables e cient usage of tensor compiler frameworks. Such frame-

worksembracetensorsas rst classcitizens, and providespeci cop-

timization techniques targeting tensor algebra programs. Since DL

primitives are inherently tensor algebra programs, there is a large

amount of ongoing research that leverages specialized tensor com-

pilers for DL workload development (e.g. TVM [20], GLOW [21],

PlaidML [22], MLIR [23]). However, compilers struggle to optimize

small GEMM- avored loop nests that arise in tensor programs [24].

Contemporary architectures become increasingly complex, and all

the micro-architectural idiosyncrasies have to be considered in or-

der to achieve close-to-peak performance. Our kernel is optimized

for the nuances of the architecture at hand, and serves tensor com-

pilersarobust building block that can beused during thepolyhedral

optimization phase of general loop nests [22, 25].

To illustrate theviability and generality of our methodology with

a single kernel, wedevelop DL primitiveswhich target training and

inference of RNN/LSTM, CNN and MLP workloads in⇠3,000 lines

of high-level C code. Our primitives outperform vendor-optimized

libraries on CPUs. We also provide proof-of-concept design with

a tensor compiler framework by showcasing e cient CNN imple-

mentation in TVM that leverages our batch-reduce GEMM kernel.

Additionally, our methodology providesapathway for performance

portability; we present exemplary, high-performance CNN kernels

on integrated GPUs. Last but not least, we integrate our primitives

in distributed DL frameworks (Tensor ow [26] and GxM [27]), and

show performanceresultson two training workloads: Google’sNeu-

ral Machine Translation (GNMT) [5] and ResNet-50 training [28].

These results push the envelope of DL training performance on

CPU clusters. The main contributions of this paper are:

• The introduction of the batch-reduce GEMM kernel along with

its e cient implementation.

• The design and implementation of multi-threaded, high per-

formance DL primitives covering RNN/LSTM, CNN and MLP

inference and training algorithms with batch-reduce GEMM

kernel being the basic building block. We need to optimize at

low-level only thiskernel for all DL primitives.

• A detailed performance comparison of our DL primitives with

state-of-the-art vendor-optimized libraries.

A0

A1

A2

A3

B0

B1

B2

B3

Cj

Tensor A Tensor B Tensor C

!" = $ ∗ ! " + α ∑ ' (∗) (
* +,
(- .

(b)

A
i
s
u

b
c
o
lu

m
n

C
j
a
c
c
u
m

u
la

to
rs

 i
n

2
4
 v

e
c
to

r
re

g
is

te
rs

(a)

bcast Bi subrow in 6 vec registers

30

0

29 28 27 26 25

24 23 22 2120 19

18 1716 15 1413

12 11 10 9 8 7

65 4 3 2 1

Figure 2: (a) The batch-reduce GEMM kernel (b) Outer prod-

uct smal l GEMM microkernel

Algori thm 1 The batch-reduce GEMM kernel

Inputs:Ai 2 IRm⇥k ,Bi 2 IRk⇥n i = 0, ..., N-1,Cj 2 IRm⇥n α,β 2 IR

Output : Cj = β ·Cj + α
P N−1

i =0 Ai ·Bi

1: for in = 0. . .n − 1 with step nb do

2: for im = 0. . .m − 1 with step mb do

3: acc_regs load mb ⇥nb Cj subblockim , i n

4: for i = 0. . . N − 1 with step 1 do

5: for ik = 0. . .k − 1 with step 1 do

6: . Outer product GEMM microkernel

7: acc_regs += Ai subcolumnim , i k
⇥Bi subrowi k , i n

8: Cj subblocki m , i n acc_regs

• Distributed memory results of LSTM and CNN training work-

loads that leverage our optimized DL kernels and outperform

the best in class results on CPU clusters.

• CNN proof-of-concept results on integrated GPUs and CNN ker-

nels within TVM that leverage the batch-reduce GEMM kernel.

2 THE BATCH-REDUCE GEMM KERNEL

In this section, we describe the design and implementation of the

new batch-reduce GEMM kernel which comprises the cornerstone

of our deep learning primitives. Figure 2 (a) illustrates the function-

ality of the new kernel which materializes the operation:

Cj = β ·Cj + α

N−1X

i =0

Ai ·Bi

This kernel multiplies the speci ed blocks Ai 2 IRm⇥k and Bi 2

IRk⇥n and reduces the partial results to a block Cj 2 IRm⇥n of a

tensor C. TensorsA and B can alias and also the blocksAi and Bi

can reside in any position in the input tensors A and B. The batch-

reduce GEMM kernel takes the following arguments: (i) two arrays

of pointers to the corresponding blocksAi and Bi to be multiplied,

(ii) apointer to theoutput block Cj , (iii) thenumber N of theblocks

to be multiplied and (iv) the scaling parametersα and β.

Our kernel di ersfrom therecently introducedbatchedGEMM [19]

and its variation strided-batch-gemm [29] that materialize:
Ci = β ·Ci + α ·Ai ·Bi

These batched routines are missing the reduction functionality and

cannot optimize for the output matrix re-use. Also, the strided-

batch-gemm kernel accesses the Ai and Bi subblocks based on

xed strides and therefore is more restrictive.

The new batch-reduce GEMM kernel speci cation naturally

lends itself to a handful of optimizations. First, this kernel min-

imizes the output data movement compared to GEMM or batched

Tile 0 Tile 1

Tile 2 Tile 3

Tile 4

Tile 5

Tile 6 Tile 7

A
 t

il
es

B tiles

4
 a

cc
u

m
u

la
to

r
ti

le
s

A
i
s
u
b
c
o
lu

m
n 0

15 1413

12 11 10

9 8 7

65 4

3 2 1

bcast Bi subrow in 3 vec registers

C
j
a
c
c
u
m

u
la

to
rs

 i
n

1
2
 v

e
c
to

r
re

g
is

te
rs

Microkernel with 16 vector registers
(e.g. Intel/AMD with avx2)

Microkernel with 2D register file
(e.g. Intel with AMX)

Microkernel with 32 vector registers
(e.g. Intel with avx512, Arm Neoverse)

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 17

Blueprint of Primitives via TPPs

Loops around Unary/Binary/Ternary/Equations of TPP

(e.g. tensor tiling, cache blocking, parallelization)

Unary/Binary/Ternary/Equation TPPs before tensor contraction

Tensor contraction via the ternary BRGEMM TPP

Unary/Binary/Ternary/Equation TPPs after tensor contraction

A handful of
experts

Most of Developers (Libraries & applications)

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 18

BF16 Matrix Multiplication on 56c SPR

49787
52005

56412
53405.7

35245.9

30671

0

10000

20000

30000

40000

50000

60000

1024x1024x1024 2048x2048x2048 4096x4096x4096

G
FL

O
P

S

BF16 GEMM (MxNxK) on SPR (56c@2Ghz)

TPP+ThreadedLoops oneDNN

• Specific instantiations of loop nest is governed at runtime by a single param (loop_spec_str)

• Trivial auto-tuning on the loop_spec_string – 0 lines of code change in user code

• Same code for all platforms and precisions !

• oneDNN GEMM does not support blocked layout for A, thus degraded performance

I wrote this code !!!

https://arxiv.org/pdf/2304.12576

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 19

Penguin’s Programming World

▪ Logically describe the loop nest

▪ Express the computation using the logical indices and TPP

▪ Resembles the for the (AI) programmer familiar CUDA/CUTLASS programming
paradigm on CPU and GPU

▪ Exactly the same user code for all platforms and compute precisions

▪ This framework naturally lends itself to auto-tuning / AI guide tuning.

▪ Efficient chaining of TPPs without dealing with Polish Notations and lengthy
APIs.

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 20

▪ TPP based BERT matches the performance of SOTA hand-vectorized and non-portable code

▪ Outperform Hugging Faces reference implementation up to 6.5x

▪ Multiple precisions and portable across multiple platforms without code changes

BERT Large Fine-tuning Performance

1.79
1.67

2.89
2.98

0

0.5

1

1.5

2

2.5

3

3.5

Hugging Faces Reference GEMMS only via TPPs all workload via TPPs hand-vectorized (avx512)

e
xa

m
p

le
s/

se
c

FP32 BERT implementations on CLX

0.79
0.29

0.73

1.79
2.19

2.93

1.10

1.90

2.71
2.89

3.18

4.66

5.97

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

BDX GRAVITON2 ROME CLX CPX ICX CPX-BF16

ex
am

pl
es

/s
e

c

BERT performance across multiple platforms/precisions

Hugging Faces Reference TPP-based implementation

1.4x

6.5x

3.7x 1.6x
1.4x

1.6x

0

10

20

30

40

50

60

70

80

90

HF-ref TPP HF-ref TPP

ROME GRAVITON2

0

2

4

6

8

10

12

14

HF-ref TPP HF-ref TPP TPP-BF16 HF-ref TPP

CLX CPX ICX

Ti
m

e
 p

e
r

it
er

a
ti

o
n

(s
ec

)

Performance breakdown

GEMM Dropout GeLU Others

1.79
1.67

2.89
2.98

0

0.5

1

1.5

2

2.5

3

3.5

Hugging Faces Reference GEMMS only via TPPs all workload via TPPs hand-vectorized (avx512)

e
xa

m
p

le
s/

se
c

FP32 BERT implementations on CLX

0.79
0.29 0.73

1.79
2.19

2.93

1.10

1.90

2.71 2.89
3.18

4.66

5.97

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

BDX GRAVITON2 ROME CLX CPX ICX CPX-BF16

e
xa

m
p

le
s/

se
c

BERT performance across multiple platforms/precisions

Hugging Faces Reference TPP-based implementation

1.4x

6.5x

3.7x 1.6x
1.4x

1.6x

0

10

20

30

40

50

60

70

80

90

HF-ref TPP HF-ref TPP

ROME GRAVITON2

0

2

4

6

8

10

12

14

HF-ref TPP HF-ref TPP TPP-BF16 HF-ref TPP

CLX CPX ICX

T
im

e
p

e
r

it
e

ra
ti

on
 (s

e
c)

Performance breakdown

GEMM Dropout GeLU Others

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 21

TPP GPU Efforts @Intel

▪GPU: CUTLASS for SYCL:

• https://github.com/codeplaysoftware/cutlass-fork/blob/sycl-
develop/examples/sycl/pvc/pvc_bfloat_dpas_gemm_cute.cpp

▪GPU: ukernels in oneDNN (can be extended if needed)

• https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/microkernels

• SDPA (Scaled Dot Product Attention) using ukernels

• https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/ocl

https://github.com/codeplaysoftware/cutlass-fork/blob/sycl-develop/examples/sycl/pvc/pvc_bfloat_dpas_gemm_cute.cpp
https://github.com/codeplaysoftware/cutlass-fork/blob/sycl-develop/examples/sycl/pvc/pvc_bfloat_dpas_gemm_cute.cpp
https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/microkernels
https://github.com/oneapi-src/oneDNN/tree/main/src/gpu/intel/ocl

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 22

TPP-Like efforts outside of Intel

GPU

▪ Nvidia CUTLASS

• https://github.com/NVIDIA/cutlass

▪ OpenAI Triton

• https://github.com/triton-lang/triton

▪ AMD Composable Kernels:

• https://github.com/ROCm/composable_kernel

▪ ThunderKittens (Stanford)

• https://github.com/HazyResearch/ThunderKittens

CPU

▪ ARM Kleidi

• https://gitlab.arm.com/kleidi/kleidiai

https://github.com/NVIDIA/cutlass
https://github.com/triton-lang/triton
https://github.com/ROCm/composable_kernel
https://github.com/HazyResearch/ThunderKittens
https://gitlab.arm.com/kleidi/kleidiai

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 23

TPP-MLIR
https://arxiv.org/abs/2404.15204v1

https://github.com/plaidml/tpp-mlir

https://arxiv.org/abs/2404.15204v1

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 24

Goal: “clang for AI” in MLIR*

Goals

▪ Standardizing torch->MLIR->hardware
lowering by establishing the “beaten path”
by an upstream compiler, e.g. llvm incubator
project

▪ Dialects, Passes, Transforms, e.g. stay in
MLIR (llvm-project) and ideally the compiler
is just the glue-code with the pass pipeline

▪ Compiler starts with LinAlg as the highest-
level dialect

▪ Focus on x86 for now (it’s everywhere), but
run on GPUs as well.

Pytorch

Torch-mlir

LinAlg

Vector

LLVM

A
rtith

, s
c

f, e
tc

.

ukern
els

GPU Dialects

U
p

s
tr

e
a

m
 C

o
m

p
ile

r,

o
n

ly
 p

a
s

s
 p

ip
e

lin
e

, n
o

 n
e

w
 d

ia
le

c
t

https://github.com/pytorch/pytorch/

https://github.com/llvm/torch-mlir

https://github.com/llvm/llvm-project

*Multi Level Intermediate Representation

S
y
m

b
o

lic
 c

o
m

p
u

tin
g

 to
 a

s
s
e

m
b

ly

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 25

Overview

▪ Ingress

• Whole tensor ops

• Language semantics (graph)

▪ Transform

• Graph sharding, placement

• Tiling, blocking, cache fusing

• Loop reordering, k-splitting

• Register level fusing

▪ Lowering

• Optimal SIMD/SIMT code

• Linking, Offloading

StableHLO, Torch, TOSA

Linalg on Tensors

Linalg on Tensors
Linalg/Vector on
Memrefs
SCF, Arith, Math
OMP

LLVM, SPIRV , XeGPU, XSMM
for library calls

Abstraction Level

Intel ConfidentialDepartment or Event Name 26Intel Labs – Parallel Computing Lab 26

Packing shapes

2D shape
M x N

4D shape
(MB x NB) x (mb x nb)

Block-transpose
(NB x MB) x (mb x nb)

B matrix column access becomes row access (cache-friendly), transpose is fast (block copy)
A, B and C are now on the same access pattern

O(n2) packing cost pays off with O(n3) GEMM access savings

Intel ConfidentialDepartment or Event Name 2727Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads Intel Labs

Parallelisation Strategies

Random
scf.parallel has
no defined rule

2D parallel
Rectangular blocking
Multi-thread aware
Minimizes data moves

Increased cache awareness

Row / Column
Block tiles by multiple rows or columns
Still not optimal for multi-threaded

Intel ConfidentialDepartment or Event Name 2828Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads Intel Labs

Intel® AMX High-Level Architecture

IA Host

Coherent
Memory
Interface

tmm0
tmm1

tmm[n-1]

Coprocessor 1

(TMUL)

Tmm0 += Tmm1 * Tmm2

Coprocessor 2

TILES and
coprocessor
commands

Commands and status delivered synchronously via TILE/accelerator instructions

Dataflow – accelerators communicate to host through memory

New state to be managed by OS

TILECONFIG

Intel ConfidentialDepartment or Event Name 2929Tensor Processing Primitives: A Programming Abstraction for Efficiency and Portability in Deep Learning Workloads Intel Labs

2D Parallel + AMX Tile Config Hoisting

FORALL (M, N) {
BRGEMM(A’, B’, C’)
ADD(C’, bias)
ReLU(C’)

}

M x N iterations
T threads

T << M x N

Which distribution?

FORALL (M, N) {
AMXSetup(Tm, Tn)
BRGEMM(A’, B’, C’)
ADD(C’, bias)
ReLU(C’)
AMXReset(Tm, Tn)
}

FORALL (M/m, N/n) {
FOR (m) {
FOR (n) {

AMXSetup(Tm, Tn)
BRGEMM(A’, B’, C’)
ADD(C’, bias)
ReLU(C’)
AMXReset(Tm, Tn)
}

}
}

Tile Setup runs on every tile,
even if on the same thread

2D Parallel Tile Config per thread

Each thread on
this distribution!

FORALL (M/m, N/n) {
AMXSetup(Tm, Tn)
FOR (m) {

FOR (n) {
BRGEMM(A’, B’, C’)
ADD(C’, bias)
ReLU(C’)

}
}
AMXReset(Tm, Tn)
}

Each thread on
this distribution!

One setup
per thread

One reset
per thread

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 30

GEMM on Intel Max GPU (Ponte Vecchio / PVC)

GEMM to GPU Work- and Subgroups GEMM Subgroup tile as Systolic Array tiles

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 31

TPP-MLIR -- Multi-Threaded BF16 (IR gen, pre-packed 4D)

• 2D parallelization using optimal blocking depending on the number of threads
• Almost perfect scalability on Zen4, good scalability on Graviton 3
• SPR shows the same final performance as Ninja-Coded applicaitons

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 32

TPP-MLIR Intel Max GPU Performance GEMM FP16

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

70000.00

80000.00

1024 2048 4096 8192

G
FL

O
P

S

N=K SIZE

GEMM M=128
PVC GPU Max 1100

TPP DEFAULTS TPP FINETUNED

0.00

20000.00

40000.00

60000.00

80000.00

100000.00

120000.00

140000.00

1024 2048 4096 8192

G
FL

O
P

S
N=K SIZE

GEMM M=256
PVC GPU Max 1100

TPP DEFAULTS TPP FINETUNED

0.00

20000.00

40000.00

60000.00

80000.00

100000.00

120000.00

140000.00

1024 2048 4096 8192

G
FL

O
P

S

N=K SIZE

GEMM M=512
PVC GPU Max 1100

TPP DEFAULTS TPP FINETUNED

▪ GEMM kernel tuning parameters

• Workgroup tile sizes – default: 128x128 – used tuning values: 64, 128, 256

• Subgroup tile sizes – default: 32x32 – used tuning values: 16, 32, 64

• Reduction dimension tiling – default: 32 – used tuning values: 16, 32, 64

▪ Kernel parameter selection is crucial for good performance

• Requires cost model and heuristics

▪ Lowering allows for quick GEMM kernel finetuning

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 33

Triton-CPU with TPP
https://github.com/plaidml/triton-cpu

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 34

Triton-CPU Pipeline

Benchmark XSMM lowering
path

Vector still used for basic
operations like loads/stores

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 35

Performance – 5th Gen Xeon

0

200

400

600

800

1000

256 384 512 640 768 896 1024115212801408153616641792192020482176230424322560

G
FL

O
P

S

M=N=K

SPR - BF16 - Single core

PyTorch native PyTorch compile

Triton v1 scalar Triton v1 block

XSMM scalar XSMM block

XSMM pad-K XSMM loop-collapse-pad-B

XSMM external-pad

0

5000

10000

15000

20000

25000

30000

256 384 512 640 768 896 1024115212801408153616641792192020482176230424322560

G
FL

O
P

S

M=N=K

SPR - BF16 - Multicore

PyTorch native PyTorch compile

Triton v1 scalar Triton v1 block

XSMM scalar XSMM block

XSMM pad-K XSMM loop-collapse-pad-B

XSMM external-pad

0

20

40

60

80

100

120

140

256 384 512 640 768 896 1024115212801408153616641792192020482176230424322560

G
FL

O
P

S

M=N=K

SPR - F32 - Single core

0

1000

2000

3000

4000

5000

6000

256 384 512 640 768 896 1024115212801408153616641792192020482176230424322560

G
FL

O
P

S

M=N=K

SPR - F32 - Multicore

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 36

What is needed for high performance Triton-CPU

▪ Robust and performant infrastructure

▪ Efficient representation and/or implementation of basic operations e.g., data transfers

▪ User and compiler cooperation e.g., high-performance vectorizer

▪ Dense memory representation

o Block pointers essential to map to ukernels in a plug-n-play fashion

▪ Reduction loop collapsing

o Reconstruct full K dim from tiling loop

o Whole GEMM loop as a single BRGEMM kernel: amortize overhead of tile configs in case of AMX, avoid multiple C load & stores, enables
effective SW-pipeline opportunities within the ukernel (e.g. to vnni-format weight matrix within the ukernel with minimal overhead)

▪ Microkernels

o Feasible path for quick results → for all precisions supported in ukernel (see Triton CPU v1 which is substantially slower for FP32 than
BF16)

o Bridging interface mismatch – vector vs memref – is expensive

▪ Eliminate the power-of-2 size restrictions in Triton

o Large power-of-2 leading dimensions cause excessive number of cache conflict misses that plummet performance (cache trashing)

o Obviates the need for padding (happening always now) that is not needed algorithmically and hinders performance (unless the real
GEMM dimensions are large powers-of-2 where padding is optimization)

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 37

Conclusions

From Tensor Processing Primitive towards Tensor Compilers using upstream MLIRIntel Labs 38

Conclusions

▪ Even the high-level abstraction will map directly to TPP without issues on CPU and GPU

▪ Software and Ease of Use is most challenged with speeding up MatMul in hardware

• How to make sure the non-linear portion is not holding us back (same for digital and optical)

• Not covered here: scaling to trillions of parameters requires very large systems
(communication/sharding) in all cases

▪ We should all thrive for an upstream & community owned compiler, ala “clang for AI”

▪ Notable papers for how to program Intel systems

• https://arxiv.org/abs/2104.05755

• https://arxiv.org/pdf/2304.12576

• https://arxiv.org/abs/2404.15204v1

https://arxiv.org/abs/2104.05755
https://arxiv.org/pdf/2304.12576
https://arxiv.org/abs/2404.15204v1

39

	Slide 1: From Tensor Processing Primitives towards Tensor Compilers using upstream MLIR
	Slide 2: Disclaimer
	Slide 3: Outline
	Slide 4: Motivation – Parallel Computing Lab Charter
	Slide 5: Hardware/Software Co-Design – the next 1000x
	Slide 6: Algorithmic Challenges – Amdahl's Law
	Slide 7: Fused Building Blocks: Attention
	Slide 8: Tensor Processing Primitives (TPP)
	Slide 9: All AI Framework attempt to solve M:N Challenge
	Slide 10: Some not so serious Truths
	Slide 11: How to avoid the 15th Standard
	Slide 12: Bridging the Ninja Performance Gap
	Slide 13: Scalable DL software stack
	Slide 14: What are Tensor Processing Primitives (TPP)
	Slide 15: TPP Ingredients
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Penguin’s Programming World
	Slide 20: BERT Large Fine-tuning Performance
	Slide 21: TPP GPU Efforts @Intel
	Slide 22: TPP-Like efforts outside of Intel
	Slide 23: TPP-MLIR
	Slide 24: Goal: “clang for AI” in MLIR*
	Slide 25: Overview
	Slide 26: Packing shapes
	Slide 27: Parallelisation Strategies
	Slide 28: Intel® AMX High-Level Architecture
	Slide 29: 2D Parallel + AMX Tile Config Hoisting
	Slide 30: GEMM on Intel Max GPU (Ponte Vecchio / PVC)
	Slide 31: TPP-MLIR -- Multi-Threaded BF16 (IR gen, pre-packed 4D)
	Slide 32: TPP-MLIR Intel Max GPU Performance GEMM FP16
	Slide 33: Triton-CPU with TPP
	Slide 34: Triton-CPU Pipeline
	Slide 35: Performance – 5th Gen Xeon
	Slide 36: What is needed for high performance Triton-CPU
	Slide 37: Conclusions
	Slide 38: Conclusions
	Slide 39

