
Creating
World
Changing
Technologies

Driving a New Era of Accelerated Computing
Intel® Fortran Compiler (IFX)

Our Fortran Solution 2022

3

Intel® Fortran Compiler Classic (ifort)
Best-In-Class Fortran language features

and performance for CPU today!

Intel® Fortran Compiler (ifx)
Driving a new era in accelerated computing!

Our Fortran compiler solution for Intel GPU offload
Committed to overall Best-in-Class Fortran for 2023 release

Because you need advanced Fortran language features and the
absolute best performance for your applications on Intel solutions

We deliver
CHOICE! Continuity! Features! Performance!

Our Fortran Solution - Compilers

4

Our Fortran Solution – Compilers Details
• Two separate compilers. Same Intel Fortran Frontend (FFE). Both compilers in all packages.

CHOICE! Continuity!

• ifort - Intel Fortran parser/analyzer + Intel optimizer/code generation

• CPU only classic compiler. NO OFFLOAD TO GPU
• Full F2018 support, best performance: Features! Performance!

• Named “Intel® Fortran Compiler Classic”

• ifx – Intel Fortran parser/analyzer + LLVM optimizer and code generation (with Intel
enhancements)
• Supports OpenMP Offload to Intel GPUs Features!

• F2003/2008 excluding Parameterized Derived Types & Coarrays
• Binary compatible with DPCPP, ICX, ICC, IFORT

• Named “Intel® Fortran Compiler”

5

A Fortran Solution – Complementary Compilers

• IFX is not a replacement for IFORT in 2022
• IFX provides outstanding OpenMP 5.x acceleration to Intel GPU
• IFORT is the best in class Fortran 2018 compiler for CPU
• Binary compatibility means you get the best of both

• Together you get the best Fortran SOLUTION for xPU in 2022

6

Intel® Compilers – Target & Packaging

Compilers are Binary Compatible and Linkable!

Intel Compiler Driver Target* OpenMP
CPU Support

OpenMP
Offload
Support

Intel® Fortran Compiler Classic ifort CPU Yes No

Intel® Fortran Compiler ifx CPU, GPU Yes Yes

Intel® C++ Compiler Classic icc CPU Yes No

Intel® oneAPI DPC++/C++ Compiler
dpcpp CPU, GPU,

FPGA Yes Yes and No*

icx CPU
GPU Yes Yes

Creating
World
Changing
Technologies

IFX 2022

Status of features and performance in
Intel® oneAPI 2022.x Products

8

IFX: Driving a New Era in Accelerated Computing
The Intel® Fortran Compiler (IFX) is driving a new era of accelerated computing across XPU
architectures (CPU, GPU). IFX is our Fortran compiler going forward.

• Supports OpenMP* 5.x Standards to enable GPU offload from Fortran

• No need to call C/C++ or proprietary APIs for GPU acceleration!

• An open, portable Standard to maintain your software investment

• Same Fortran parser/analyzer (front end) you know and love from IFORT

• Supports legacy DEC extensions and most of F03/F08* (see next slide) and… majority of
IFORT compiler directives and options you have used for years.

• And Microsoft Visual Studio* integration for Windows*

• HOWEVER … IFX still in development throughout 2022 with the goal to reach IFORT feature
& general performance parity* by the end of 2022.

* * average performance of many apps, but not every app

IFX Status, in Intel® oneAPI 2022.1.x
OpenMP 5.0 and 5.1 majority subset support (see Reference slides)

Complete Fortran 2003 and Fortran 2008 Standard features EXCEPT
• Fortran 2003 parameterized derived types
• coming in oneAPI 2022.2 Update 1, ifx comp. version v2022.1.0

• Fortran 2008 coarrays coming in Update 2
• Fortran 2018 features coming, a lot in Update 2, finish at end of 2022

Performance: IFX may or may not match performance of ifort compiled
applications. Improvements coming with each Update release

Each Update will provide more Fortran Language & OpenMP features
AND performance improvement. Stay up to date!

Creating
World
Changing
Technologies

IFX 2022

Getting Started

11

Important High-Level Understanding of IFX

• Although both IFORT and IFX use the same
language parser (Fortran Front End)
EVERYTHING after that is DIFFERENT

• Key takeaway – optimization, vectorization,
optimization reports, inlining, unrolling,
interprocedural optimization, profile guided
optimization, floating point control, code
generation is all different. SO …

• Examine the compiler options you are using,
remove most of the “exotic” performance
options.
Start with simplest subset like
-O2 –xhost -flto

Be aware that the default
optimizations used by ifx are aggressive.

You may specify the following flags to ifx
to turn off default optimizations:

- On Linux: -O0 -fno-fast-math
- On Windows: /O0 /fp:precise

Currently, To get Intel
optimizations over LLVM defaults
YOU MUST USE –x<arch>

AND you SHOULD use –flto

12

IFX Fortran Language Support
• First, check state of IFX Fortran Standard support

• -stand [f90 | f95 | f03 | f08 | f18 | nostand] default is NOSTAND or
no standards warnings

• Use -stand f03 if you want warnings for features not in F2003

• Use -stand f03 –warn errors options to abort if any
detected.

Latest updates listed here

https://software.intel.com/content/www/us/en/develop/articles/
fortran-language-and-openmp-features-in-ifx.html

https://software.intel.com/content/www/us/en/develop/articles/fortran-language-and-openmp-features-in-ifx.html
https://software.intel.com/content/www/us/en/develop/articles/fortran-language-and-openmp-features-in-ifx.html

13

IFX Essentials – IFX Options Support

Undocumented IFORT options are not implemented and there is no plan to
implement them.
IFX options that are implemented are accepted quietly (no msg)
IFX options that are not implemented generate this warning:

ifx: command line warning #10430: Unsupported command line options
encountered
These options as listed are not supported.
For more information, use '-qnextgen-diag’.

ifx -qnextgen-diag
Prints a long list of IFORT options TO BE supported
And prints a long list of IFORT options that are removed

14

Linux* ifx (ifort)

Disable optimization -O0

Optimize for speed (no code size increase) -O1

Optimize for speed (default) -O2

High-level loop optimization -O3

Create symbols for debugging -g

Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step
build)

-fprofile-generate (-prof-gen)
-fprofile-use (-prof-use)

Optimize for speed across the entire
program (“prototype switch”)

-fast same as “-ipo -O3 -static -fp-model fast”
(-ipo -O3 -no-prec-div –static -fp-model fast=2 -xHost)

OpenMP support -fiopenmp or -qopenmp (-qopenmp)

Common Optimization Options

15

OpenMP

16

High level architecture

OpenMP
C/C++/Fortran

OpenMP CPU RT OpenMP offload runtime -
libomptarget

L0 ZE Plugin

GPU OpenCL RT Level Zero ZE RTCPU OpenCL RT

GPU (Gen9 and Xe)

GPU KMD Driver

CPU

TBB

OCL Plugin

17

Prerequisites

§ OCL driver is installed separately, it’s a prerequisite
https://dgpu-docs.intel.com/installation-guides/index.html
§ TBB is needed if you want to target CPU target device.
• From oneAPI Base Toolkit (downloads or pkg managers)
• From Standalone Component Downloads
• https://www.intel.com/content/www/us/en/developer/articles/tool/o

neapi-standalone-components.html

https://www.intel.com/content/www/us/en/developer/articles/guide/in
stallation-guide-for-oneapi-toolkits.html

https://dgpu-docs.intel.com/installation-guides/index.html
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html
https://www.intel.com/content/www/us/en/developer/articles/guide/installation-guide-for-oneapi-toolkits.html

18

Just-In-Time (JIT) Compilation Flow

ICX driver
or IFX driver CLANG FE

IFX FE

LLVM-IR
opt’s

.obj
write

r

.bc
write

r

LLVM-IR
linker

.bc

LLVM-IR
-2- SPIRV

.spv

.obj
.cpp

.f90 SPRIV -2-obj offload-wrapper

.obj

Host
linker

.exe

.obj, .lib

host-code

JIT compiler

device-code

loader
runtimeHost-path

Device-path

FAT binary
Host: regular IA code
Device: Single SPIR-V wrapped in .exe ‘data’ section

LLVM-IR “Byte
Code”

SPIRV
-2-

LLVM-IR

LLVM-IR
opt’s

HW specific
Code-gen

HW specific
Code-gen

JIT compiler

19

Ahead-Of-Time (AOT) Compilation Flow
CLANG FE

IFX FE

LLVM-IR
opt’s .obj writer

.bc writer

LLVM-IR
linker

.bc

.obj
.cpp

.f9
0

.obj

host
linker

.exe

.obj, .lib

host-code

AOT compiler

device-code

loader
runtimeHost-path

Device-path

FAT binary
- Host: regular IA code
- Device: target HW bin-code

wrapped in .exe ‘data’ section

LLVM-IR “Byte Code”

LLVM-IR
opt’s

HW specific
Code-gen

.obj
writer

bin -2- .obj
offload-wrapper

.bin

HW specific
Code-gen

AOT compiler

ICX driver
or IFX driver

20

Intel Fat Binary Format
§Advantage: Fat binary has advantage that executable or libraries

have both host and SPIRV or device code
§Disadvantage: Standard LLVM tools do not recognize this format
§Consequence: Intel provided replacements for working with Fat

binaries:
§Use IFX as linker for any app/library with fat object files
§Use our LLVM bin tools replacements (next slide)
<root>/oneapi/compiler/[latest | <ver>]/bin-llvm

21

Intel Binary Tools

§ Replacement utils for LLVM tools manipulating our
fat binaries:

§ Not in default path so as to not name collide with
system LLVM and tools.

§ Location:

<root>/oneapi/compiler/[latest | <ver>]/bin-llvm

§ lld, llvm-ar, llvm-ranlib, llvm-link, etc.
§ If you have ICX installed, full path can be printed:
• icx --print-prog-name=llvm-ar

22

OpenMP Offload with Intel® Compilers

Built-in Support for Intel® Xe

23

tinyurl.com/intel-openmp-offloadGet Started with OpenMP* Offload Feature to GPU:

OpenMP with Intel® Compilers

Drivers
icx (C/C++) ifx (Fortran)

Adheres to OpenMP spec directives to
target for offload
OPTIONS

-fiopenmp
Selects Intel Optimized OMP
-fopenmp maps to –fiopenmp,
deprecated will be removed
-qopenmp maps to –fiopenmp

-fopenmp-targets=spir64
Needed for OMP Offload
Generates SPIRV code fat binary for offload
kernels

icpx –fiopenmp –fopenmp targets=spir64 source.cpp

ifx –fiopenmp –fopenmp targets=spir64 source.f90

JIT compilation

AOT compilation – Docs Coming soon
icpx -fiopenmp -fopenmp-targets=spir64_gen

-Xopenmp-target-backend "-device <dev>" source.cpp

ifx -fiopenmp -fopenmp-targets=spir64_gen
-Xopenmp-target-backend "-device <dev>" source.f90

<dev> is your target, use ‘ocloc compile –help’ for list of
targets

https://tinyurl.com/intel-openmp-offload

24

Example: Simple Matrix Multiply Offload
program matrix_multiply
use omp_lib
implicit none
integer, parameter :: N=1000
integer :: i, j, k, my_thread_id
real, allocatable, dimension(:,:) :: a, b, c, c_validate

allocate(a(N,N), b(N,N), c(N,N), c_validate(N,N))
! Initialize the arrays A and B, set C to 0.0 (not shown)

!... offload data & compute matrix multiply on the GPU
!... send 'a' and 'b' but do not move them back (no change)
!... 'c’ goes to GPU and brought back from GPU (changed)

!$omp target map(to: a, b) map(tofrom: c)
!$omp parallel do

do j=1,N
do i=1,N
do k=1,N
c(i,j) = c(i,j) + a(i,k) * b(k,j)

enddo
enddo

enddo
!$omp end parallel do
!$omp end target

Transfer control and data from the host to
the device

Syntax
!$omp target [clause[[,] clause],…]
structured-block

Clauses for TARGET
device(scalar-integer-expression)
map([{alloc | to | from | tofrom}:] list)
if(scalar-expr)

These OMP pragmas cause the
loop to execute on a target

device (i.e., GPU)

25

Offloading and Device Data Mapping

• Use target construct to
• Transfer control from

the host to target device
• Map variables between

the host and target
device data
environments

• Host thread waits until offloaded region is completed
• Use other OpenMP tasks for asynchronous execution

• The map clauses determine how an original variable in a data environment is
mapped to a corresponding variable in a device data environment

• OpenMP also provides Unified Shared Memory IF you want the data mapping
to be automatic (not shown, not in IFX as of Q1 2022, coming soon)

Host Device

#pragma omp target \

alloc(…)
1

from(…)
4

to(…)
2

A

map(alloc:...) \
map(to:...) \

{ exec kernel}3

map(from:...) 4

1
2

26

OpenMP Essential Environment Variables

§Helping you guide your OpenMP Runtime

27

Essential Environment Variables
§ Select Target Device with Environment variable

OMP_TARGET_OFFLOAD = mandatory | disabled | default
• mandatory – The target region runs code on GPU or other accelerator
• disabled – The target region code runs on CPU
• default - The target region runs on GPU if device is available, else will fall back to the CPU

§ Select Plugin/Driver
LIBOMPTARGET_PLUGIN= [OPENCL | LEVEL0]
LIBOMPTARGET_DEVICETYPE= gpu | cpu (only works for OpenCL)

§ Performance profiling for tracking on GPU kernel start/complete time and data-transfer time.
LIBOMPTARGET_PLUGIN_PROFILE

Dumps offloading runtime debugging information.
LIBOMPTARGET_DEBUG= [1 | 2]
LIBOMPTARGET_INFO (see LLVM Runtimes document URL below)

https://openmp.llvm.org//design/Runtimes.html

28

Essential Intel env Var LIBOMPTARGET_PROFILE
LLVM OpenMP Runtime ENV vars are accepted. Example

export LIBOMPTARGET_PLUGIN_PROFILE=T

performance profiling for tracking on GPU kernel start/complete
time and data-transfer time.

GPU Performance (Gen9, export LIBOMPTARGET_PROFILE=T,usec)
… …
Kernel Name:
__omp_offloading_811_29cbc383__ZN12BlackScholesIdE12execute_partEiii_l368
iteration #0 ...
calling validate ... ok
calling close ...
execution finished in 1134.914ms, total time 0.045min
passed

LIBOMPTARGET_PROFILE:
-- DATA-READ: 16585.256 usec
-- DATA-WRITE: 9980.499 usec
-- EXEC-__omp_offloading_811_29cbc383__ZN12BlackScholesIfE12execute_partEiii_l368:
24048.503 usec

29

Debug RT env var LIBOMPTARGET_DEBUG
Export LIBOMPTARGET_DEBUG=1

Dumps offload runtime debug information. Default value is 0
indicates no offloading runtime debugging information dump.

./matmul

Libomptarget --> Loading RTLs...
Libomptarget --> Loading library 'libomptarget.rtl.nios2.so'...
Libomptarget --> Loading library 'libomptarget.rtl.x86_64.so'...
Libomptarget --> Successfully loaded library 'libomptarget.rtl.x86_64.so'!
Libomptarget --> Loading library 'libomptarget.rtl.opencl.so'...

Target OPENCL RTL --> Start initializing OpenCL
Target OPENCL RTL --> cl platform version is OpenCL 2.1 LINUX
Target OPENCL RTL --> Found 1 OpenCL devices
Target OPENCL RTL --> Device#0: Genuine Intel(R) CPU 0000 @ 3.00GHz

…. AND MUCH MORE …

Perfect for bug reports!

30

Some Quick Notes

§Classic Compilers (icc / ifort) support CPU OpenMP features
§ LLVM-based Compilers needed for OMP Offload features
§USM ready for Intel® DPC++/C++ Compiler (icx/dpcpp)
§USM Coming Soon for Intel® Fortran Compiler (ifx)
• We can go over USM in future, separate session on OpenMP Offload

31

Resources

32

Support for Compilers IFORT and IFX

• Summary: Same support model we have used for years:
• Current version fully supported
• 2 previous versions supported but only the last Update release to that version
• AND available but unsupported - next older version, last Update only,

provided for download on Intel® Registration Center but not supported
• This means …

• IFORT will continue to be supported per our usual model.
• We will ensure you have Fortran compiler solutions that are Best-in-Class

• https://www.intel.com/content/www/us/en/developer/articles/release-notes/intel-
parallel-studio-xe-supported-and-unsupported-product-versions.html

IFX Fortran Language &
OpenMP Features Support
https://www.intel.com/content/www/us/en/developer/a
rticles/technical/fortran-language-and-openmp-
features-in-ifx.html

IFX OpenMP Features and Support

https://www.intel.com/content/www/us/en/developer/articles/technical/fortran-language-and-openmp-features-in-ifx.html

Kept up to date with tips and techniques to
help you move from ifort to ifx
https://www.intel.com/content/www/us/en/developer/
articles/guide/porting-guide-for-ifort-to-ifx.html

Porting Guide, ifort to ifx

https://www.intel.com/content/www/us/en/developer/articles/guide/porting-guide-for-ifort-to-ifx.html

https://www.intel.com/content/www/us/en/develop/documentation/fortra
n-compiler-oneapi-dev-guide-and-reference/top/compilation/supported-
environment-variables.html

Intel® Fortran Compiler Classic and Intel® Fortran
Compiler Developer Guide and Reference

https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compilation/supported-environment-variables.html

36

§Driver downloads and installation guides

System and Driver Prerequisites

https://software.intel.com/content/www/us/en/develop/articles/installation-
guide-for-intel-oneapi-toolkits.html

https://dgpu-docs.intel.com/installation-guides/index.html

https://software.intel.com/content/www/us/en/develop/articles/intel-oneapi-
base-toolkit-system-requirements.html

System Requirements

Installation guides

Questions?

Thank You for Attending!

38

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-
us/articles/optimization-notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any
of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. See backup for configuration details. For more complete information about performance
and benchmark results, visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No
product or component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

39

Backup Materials

Additional Material
For your further study

Intel Compilers Roadmap Q1 2022

Intel® C++
Compiler

Classic

Compiler Status/Maturity Schedule Use Recommendation

2021
Q1 Q2 Q3 Q4

2022

Intel®
oneAPI

DPC++/C++
Compiler

• Not recommend for new projects
• Start migration now

Intel®
Fortran

Compiler
Classic

Intel®
Fortran

Compiler

CPU

CPU

GPU

FPGA

CPU

CPU

GPU

• Driving a new era in accelerated
computing throughout 2022.
Feature and average performance
parity to IFORT by the end of 2022

CPU = Intel® Xeon® and Core™ processors
GPU = Intel® Integrated and discrete GPU’s
FPGA = Intel® FPGA’s (Stratix and Arria)

2023

Compiler XPU
Support

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
2024
Q1

Production Quality

Production Quality

Production Quality

Production Quality

Production Quality

• Continued Best-in-Class Fortran
compiler for CPU throughout 2022

** deprecation (see following slides)

• Use for all new projects

Production Quality

Beta Quality Production Quality

Beta Quality

Legacy Product Support (LPS)

**

Est Feature/Perf Parity with Classic

IFX not “a replacement” for IFORT in 2022

42

Our Fortran Solutions – Definition of Production Quality

• The Intel® Fortran Compiler v2022 (IFX) is Production Quality.
What does this mean?

• Production Quality indicates that the compiler has passed our key
performance metrics and validations and is ready for use. As always,
language and compiler features will be continued to be developed and
optimized and delivered in future releases.
• IFX provides production quality Fortran OpenMP 5.x offload support
• IFORT provides best in class Fortran 2018 for CPU
• Binary compatibility provides a complete Fortran Solution for xPU

• Most important is for the customer to provide feedback to Intel on any
technical issues that arise from the compilers so that they may be addressed
accordingly.

43

Our Fortran Solutions – Definition of Deprecation

“Deprecation” similar to Language Standards definition:
The act or process of marking the feature or product as obsolete,
to discourage its use and warn users that it *may* be phased out in
the future, but not removing the capability immediately, so as to
allow for continued compatibility for a period of time.

44

Auto-Vectorization

45

Basic Vectorization Options

-x<code>
§ Might enable Intel processor specific optimizations
§ Processor-check added to “main” routine:

Application errors in case SIMD feature missing or non-Intel processor with
appropriate/informative message

<code> indicates a feature set that compiler may target (including instruction sets and
optimizations)
§ Microarchitecture code names: BROADWELL, HASWELL, SKYLAKE, SKYLAKE-AVX512,

ICELAKE-SERVER, etc.
§ SIMD extensions: CORE-AVX512, CORE-AVX2, CORE-AVX-I, AVX, SSE4.2, etc.
§ Example: ifx -xCORE-AVX2 test.f90

ifx -xSKYLAKE test.f90

NEW! Not in docs in Q1 2022: ifort | ifx -xsapphirerapids

46

-ax<code> COMING soon (summer/fall 2022)
• Multiple code paths: baseline and optimized/processor-specific

• Optimized code paths for Intel processors defined by <code>
• Not supported by icx/ifx in 1st half of 2022

-m<code>
§ No check and no specific optimizations for Intel processors:

Application optimized for both Intel and non-Intel processors for selected SIMD feature

§ Missing check can cause application to fail in case extension not available

§ -xHost
• Host only: Target current CPU. Note: does nothing to identify/target GPUs

Basic Vectorization Options

47

Some Notes on Processor Targeting

§ -x/-ax SUGGESTION or REQUEST to compiler, not imperative

§ Both compilers sometime use AVX2 instead of AVX512

§ Force CLASSIC compiler to prefer AVX512 to AVX2 with
–qopt-zmm-usage=high

ifort -xsapphirerapids –qopt-zmm-usage=high …

§ LLVM compilers use –mprefer-vector-width=512

ifx –xsapphirerapids –mprefer-vector-width=512 …

48

IFX/ICX -x and Intel Optimizations

§Classic compilers IFORT/ICC performed Intel-specific optimizations
at -O2. Additional vec optimizations done if –x used.

§ LLVM compilers IFX/ICX will only do Intel specific optimizations
with –x or –ax options
• Without –x or –ax you get default LLVM optimizations and vectorization

• IMPLICATION: You will ONLY get the Intel optimizations and performance
with IFX if and only if you use –x or –ax options. -O2 is NOT enough with IFX

49

Interprocedural Optimizations

50

§ Interprocedural optimizations performs a static,
topological analysis of our application

§ Enabled optimizations:

• Procedure inlining (reduced function call overhead)

• Interprocedural dead code elimination, constant
propagation and procedure reordering

• Enhances optimization when used in combination with
other compiler features

• Much of ip (including inlining) is enabled by default at
option O2

• Classic Ifort creates proprietary object format

• IFX creates bytecode LLVM IR

Classic Compiler Interprocedural Optimizations (IPO)
IFX Link Time Optimization (LTO)
Multi-pass Optimization

ifort Pass 1

Pass 2

mock object

Compiling ifort -c -ipo m.f90 func1.f90 func2.f90

Linking ifort -ipo m.o func1.o func2.o

ifx Pass 1

Pass 2

LLVM IR bitcode

Compiling ifx -c -ipo m.f90 func1.f90 func2.f90

Linking ifx -ipo m.o func1.o func2.o

proprietary

51

51

Interprocedural Optimizations
Extends optimizations across file boundaries

-ip Only between modules of one source file

-ipo Modules of multiple files/whole application

Compile & Optimize

Compile & Optimize

Compile & Optimize

Compile & Optimize

file1.o

file2.o

file3.o

file4.o

Without IPO
Compile & Optimize

file1.o

file4.o file2.o

file3.o

With IPO

-ipo | -flto
(-ipo mapped to -flto)

Link Time Optimization in IFX / ICX

Ifort/icc

Ifx/icx

No opts across .o’s

opts across all .o’s

52

Cmake and IPO / LTO
§ There is also a Cmake support for IPO and LTO:

§ It's possible to enable LTO per default by
setting CMAKE_INTERPROCEDURAL_OPTIMIZATION to TRUE:

set(CMAKE_INTERPROCEDURAL_OPTIMIZATION TRUE)

§ Cmake – use version 3.21.3 or greater for oneAPI ICX / IFX support. DPCPP
work in progress

53

§ ifx uses Link Time Optimization (LTO) technology (-flto) and bitcode format

§ -ipo should be added to both compilation and linking steps (or replace
original linker with the ‘lld –fuse-ld=lld’)

§ Intel Classic and IPO binary format and tools ‘xilink’, ‘xild’, and ‘xiar’ are not
compatible with LTO. Can’t mix the 2

https://llvm.org/docs/LinkTimeOptimization.html

$ ifort -ipo -c hello.f90
$ ifx -ipo hello.o -o hello
/usr/bin/ld: hello.o:(.data+0x0): undefined reference to
`__must_be_linked_with_icc_or_xild'

$ ifx -ipo -c hello.f90
$ ifort -ipo hello.o -o hello
ipo: warning #11003: no IR in object file hello.o; was the source file compiled with -ipo

IPO Objects Do Not Mix-and-Match with LTO Objects

$ ifort -ipo -c hello.f90
$ file hello.o
hello.o: ELF 64-bit LSB relocatable,
x86-64, version 1 (GNU/Linux), not
stripped

$ ifx -ipo -c hello.f90
$ file hello.o
hello.o: LLVM IR bitcode

https://llvm.org/docs/LinkTimeOptimization.html

54

Profile Guided Optimization

55

55

Profile-Guided Optimizations (PGO)
§ Static analysis leaves many questions open for the optimizer like:

• How often is x > y
• What is the size of count
• Which code is touched how often

§ Use execution-time feedback to guide (final) optimization
§ Enhancements with PGO:

• More accurate branch prediction

• Basic block movement to improve instruction cache behavior

• Better decision of functions to inline (help IPO)

• Can optimize function ordering

• Switch-statement optimization

• Better vectorization decisions

if (x > y)

do_this();

else

do that();

for(i=0; i<count; ++i)

do_work();

56

56

PGO Usage in Classic Compilers (icc/ifort)
Profiling with Instrumentation

Compile + link to add instrumentation
ifort prog.f90 –o prog -prof-gen

Execute instrumented program
./prog (on a typical dataset)

Compile + link using feedback
ifort prog.f90 –o prog -prof-use

Dynamic profile:
12345678.dyn

Instrumented executable:
prog

Merged .dyn files:
pgopti.dpi

Step 1

Step 2

Step 3

Optimized executable: prog

57

57

PGO Usage in ICX. IFX Support TBD
Profiling with Instrumentation

Compile + link to add instrumentation
icx prog.c –o prog
-fprofile-instr-generate

Execute instrumented program
./prog (on a typical dataset)

Compile + link using feedback
icx prog.c –o prog
-fprofile-instr-use=code.profdata

Dynamic profile:
default.profraw

Instrumented executable:
prog

Merged profiles via llvm-profdata:
code.profdata

Step 1

Step 2

Step 3

Optimized executable: prog

llvm-profdata merge -output=code.profdata default.profraw

tinyurl.com/clang-pgo

https://tinyurl.com/clang-pgo

58

Optimization Reports

59

Optimization Report
§ -qopt-report[=n]: tells the compiler to generate an optimization report

n: (Optional) Indicates the level of detail in the report (0-5).
Level 5 produces the greatest level of detail.
Ifx/icx has n=3 as a max level and includes Loop Optimizations, OpenMP parallelization and Register
Allocation messages

§ -qopt-report-phase[=list] specifies one or more optimizer
phases for which optimization reports are generated.
loop: the phase for loop nest optimization
vec: the phase for vectorization
par: the phase for auto-parallelization
all: all optimizer phases

§ -qopt-report-filter=string: specified the indicated parts of your
application, and generate optimization reports for those parts
of your application.

Not supported
in ICX/IFX yet

60

60

Classic Compilers Optimization Report
$ ifort -qopt-report=3 -qopt-report-phase=vec -qopt-report-file=stdout test.f90
…
LOOP BEGIN at test.f90(3,5)
<Peeled loop for vectorization, Multiversioned v1>
LOOP END

LOOP BEGIN at test.f90(3,5)
<Multiversioned v1>

remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15450: unmasked unaligned unit stride loads: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 8
remark #15477: vector cost: 1.500
remark #15478: estimated potential speedup: 4.860
…

61

61

LLVM-based Compilers Optimization Report
$ ifx -qopt-report=3 –O2 –xhost matmul-offload.f90
Global loop optimization report for : _MAIN

LOOP BEGIN at matmul-offload.f90 (25, 5)
remark #15553: loop was not vectorized: outer loop is not an auto-

vectorization candidate at -O2. Consider using -O3.

LOOP BEGIN at matmul-offload.f90 (24, 9)
remark #15300: LOOP WAS VECTORIZED
remark #15305: vectorization support: vector length 16
remark #15475: --- begin vector loop cost summary ---
remark #15482: vectorized math library calls: 0
remark #15484: vector function calls: 0
remark #15485: serialized function calls: 0
remark #15488: --- end vector loop cost summary ---
remark #15447: --- begin vector loop memory reference summary ---

…
remark #15450: unmasked unaligned unit stride loads: 0
remark #15451: unmasked unaligned unit stride stores: 2
remark #15456: masked unaligned unit stride loads: 0
remark #15457: masked unaligned unit stride stores: 0
remark #15458: masked indexed (or gather) loads: 0
remark #15459: masked indexed (or scatter) stores: 0
remark #15462: unmasked indexed (or gather) loads: 0
remark #15463: unmasked indexed (or scatter) stores: 0
remark #15554: Unmasked VLS-optimized loads (each part of the group counted separately): 0
remark #15555: Masked VLS-optimized loads (each part of the group counted separately): 0
remark #15556: Unmasked VLS-optimized stores (each part of the group counted separately): 0
remark #15557: Masked VLS-optimized stores (each part of the group counted separately): 0
remark #15474: --- end vector loop memory reference summary ---

LOOP END
LOOP END

Note: opt-report for IFX goes to STDERR.
Redirect to save to file using shell redirect or
‘ … |& tee <filename>’

