
IXPUG 2022

IMPROVING MPI+THREADS WITH MPIX_STREAM

erhtjhtyhy

KEN RAFFENETTI, HUI ZHOU, YANFEI GUO, RAJEEV THAKUR
Programming Models and Runtime Systesms Group
Mathematics and Computer Science Division
Argonne National Laboratory

September 28, 2022

AGENDA

▪ MPI+Threads Background

▪ MPIX_Stream Proposal

▪ Message Rate Experimental Results

▪ MPI Asynchronous Progress

▪ Communication/Computation Overlap Experimental Results

▪ Conclusion

▪ Q&A

MPI+THREADS

▪ MPI does not explicitly say what a thread is, but for the purposes of this talk, we
can assume that a thread is typical operating system thread thread

▪ MPI-2.0 (1997*) added thread support levels
– MPI_THREAD_SINGLE
– MPI_THREAD_FUNNELED
– MPI_THREAD_SERIALIZED
– MPI_THREAD_MULTIPLE

▪ In typical implementations, the first 3 levels are mostly the same
– > MPI_THREAD_SINGLE may affect how external libraries are called. I.e.

may call thread-safe APIs if there is more than one thread being used by the
application

▪ MPI_THREAD_MULTIPLE is a decade(s) long struggle in optimization

MPI+THREADS

▪ MPI does not explicitly say what a thread is, but for the purposes of this talk, we
can assume that a thread is typical operating system thread thread

▪ MPI-2.0 (1997*) added thread support levels
– MPI_THREAD_SINGLE
– MPI_THREAD_FUNNELED
– MPI_THREAD_SERIALIZED
– MPI_THREAD_MULTIPLE

▪ In typical implementations, the first 3 levels are mostly the same
– > MPI_THREAD_SINGLE may affect how external libraries are called. I.e.

may call thread-safe APIs if there is more than one thread being used by the
application

▪ MPI_THREAD_MULTIPLE is a decade(s) long struggle in optimization

*Well before the multicore era of today!

MPI+THREADS

5

• Implementations for years were based

on “global lock”

• Poor  performance in small message

rate test

• MPI does not recognize threads

• Threads contend for MPI resources

• Workarounds:

• Avoid MPI_THREAD_MULTIPLE

• Use MPI (Processes) Everywhere

Multiple VCIs to preserve parallelism from

the application all the way to hardware

VIRTUAL COMMUNICATION INTERFACE (VCI)

Rohit Zambre, Aparna Chandramowliswharan, and Pavan Balaji. 2020. How I

learned to stop worrying about user-visible endpoints and love MPI. In

Proceedings of the 34th ACM International Conference on Supercomputing

(ICS '20).

VIRTUAL COMMUNICATION INTERFACE (VCI)

▪ Q: How can an application leverage multiple VCIs in MPICH?

▪ A: Many ways, but the most common is to map threads to communicators

for (int i = 0; i < num_threads; i++) {

MPI_Comm_dup(MPI_COMM_WORLD, &comms[i]);

pthread_create(&threads[i], NULL, worker_fn, &comms[i]);

}

void *worker_fn(void *comm_ptr)

{

MPI_Comm comm = *(MPI_Comm *)comm_ptr;

...

}

VIRTUAL COMMUNICATION INTERFACE (VCI)

▪ Drawbacks to the implicitly mapped VCI approach

▪ Implicit allocation means the user has to verify, through documentation or

experiments, that mapping threads to communicators will work with a given MPI

implementation. May need to set extra environment variables, etc.

▪ MPI objects are still shareable between multiple threads

(MPI_THREAD_MULTIPLE). The MPI library needs to protect them (locks),

which can cost performance.

MPIX STREAM PROPOSAL

▪ MPIX_Stream identifies a serial execution context

▪ info can be MPI_INFO_NULL, identifies a generic thread context

▪ In the case of threads, it is the application’s responsibility to ensure access to an

MPIX_Stream is serialized. Essentially MPI_THREAD_SERIAL, but at the

object-level, rather than all of MPI.

▪ Other use-cases, such as GPU stream awareness, not covered in this talk

9

int MPIX_Stream_create(MPI_Info info, MPIX_Stream *stream)

int MPIX_Stream_free(MPIX_Stream *stream)

Hui Zhou, Ken Raffenetti, Yanfei Guo, and Rajeev Thakur. 2022. MPIX Stream: An

Explicit Solution to Hybrid MPI+X Programming. In Proceedings of the 29th European

MPI Users' Group Meeting (EuroMPI/USA'22).

STREAM COMMUNICATOR

▪ Stream communicator is a communicator with local streams attached.

▪ MPIX streams are local, but communications are between pairs of them

▪ Otherwise, synchronization is unavoidable at receiver or sender.

▪ It okay for stream to be MPIX_STREAM_NULL.

▪ Conventional communicators are the same as stream communicators with
MPIX_STREAM_NULL on every process.

10

int MPIX_Stream_comm_create(MPI_Comm parent_comm,

MPIX_Stream stream, MPI_Comm *stream_comm)

EXPERIMENTAL RESULTS

▪ MT.ComB - Multi-Threaded (MT) Communication Benchmark

– https://github.com/Mellanox/MT.ComB

– Message rate tests for MPI point-to-point and one-sided APIs

– Local modifications to use window-per-thread for RMA message rate

• Communicator-per-thread already supported for point-to-point
– Local modifications to support MPIX_Stream communicator

Benchmarks

https://github.com/Mellanox/MT.ComB

MT.COMB BENCHMARK (PT2PT MSG RATE)
Intel Xeon Platinum 8180M, ConnectX-6, nodes=2, ppn=1

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

M
e
s
s
a
g
e
s
 p

e
r

s
e
c
o
n
d

Message size (bytes)

1 thread (MPI_THREAD_SINGLE)

1 thread (MPI_THREAD_MULTIPLE)

1 thread (mpix_stream)

2 threads (implict)

2 threads (mpix_stream)

4 threads (implicit)

4 threads (mpix_stream)

MT.COMB BENCHMARK (RMA MSG RATE)
Intel Xeon Platinum 8180M, ConnectX-6, nodes=2, ppn=1

0

5000000

10000000

15000000

20000000

25000000

30000000

M
e
s
s
a
g
e
s
 p

e
r

s
e
c
o
n
d

Message size (bytes)

1 thread (MPI_THREAD_SINGLE)

1 thread (MPI_THREAD_MULTIPLE)

1 thread (mpix_stream)

2 threads (implicit)

2 threads (mpix_stream)

4 threads (implicit)

4 threads (mpix_stream)

MPI PROGRESS MODEL

▪ Nonblocking MPI operations return immediately (MPI_Isend). An implementation is
permitted to only make progress if/when the user calls MPI_Test/MPI_Wait.

▪ Overlapping computation with communication can be a challenge for applications.
Does my MPI library make asynchronous progress? If not, how often should I call
progress functions?

▪ MPI Standard progress requirements are esoteric and often unintuitive

▪ Progress threads are one approach
– MPICH: MPIR_CVAR_ASYNC_PROGRESS=1
– Spawns a thread during MPI_Init, makes progress on all communication

resources until MPI_Finalize. Automatically raises the thread level to
MPI_THREAD_MULTIPLE for the user.

– Performs poorly in practice

MPIX STREAM FOR PROGRESS

▪ Progress communication on a stream instead of individual request(s)

▪ Application can create/join progress threads as needed

▪ Coordinated stream progress needs no additional thread-safety from the

implementation

▪ Progress thread does not need to be aware of outstanding requests

int MPIX_Stream_progress(MPIX_Stream stream)

EXPERIMENTAL RESULTS

▪ OSU Microbenchmarks

– https://mvapich.cse.ohio-state.edu/benchmarks/

– Full suite of MPI microbenchmarks

– Nonblocking collective benchmarks simulate communication/computation

overlap by first measuring the base latency, then adding in dummy

computation roughly equal in time to the communication latency.

• Overlap percentage included in report

– Local modifications to use MPIX_Stream-based progress thread

Benchmark

https://mvapich.cse.ohio-state.edu/benchmarks/

OSU MICROBENCHMARKS MPI_IALLREDUCE
Intel Xeon Platinum 8180M, Connect-X6, nodes=2, ppn=28

1

10

100

1000

10000

4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2

4

2
0
4

8

4
0
9

6

8
1
9

2

1
6
3

8
4

3
2
7

6
8

6
5
5

3
6

1
3
1

0
7

2

2
6
2

1
4

4

5
2
4

2
8

8

1
0
4

8
5

7
6

m
ic

ro
s
e
c
o
n
d
s

Latency

default MPIR_CVAR_ASYNC_PROGRESS mpix-stream

0

10

20

30

40

50

60

70

80

90

100

Overlap(%)

default MPIR_CVAR_ASYNC_PROGRESS mpix-stream

QUESTIONS?

▪ Website

– www.mpich.org

▪ Mailing Lists

– lists.mpich.org

▪ Github

– http://github.com/pmodels/mpich

– Try it!

– Submit an issue or pull request!

▪ Email

– raffenet@anl.gov

http://www.mpich.org/
http://lists.mpich.org/
http://github.com/pmodels/mpich
mailto:raffenet@anl.gov

