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Overview

e Drug Discovery & Design is a complex & expensive
o 0O(10) years; O(10% $
o 0O(10%) exhaustive search not an option!

e Integrated performance of multiple stages (methods)
o Different stages with varying cost vs accuracy

e Al-driven HPC algorithms and methods enhance
effective performance of traditional HPC simulations

o Many challenges, e.g., systems software to
support heterogeneous and scalable workflows

Computational Molecules most likely

e IMPECCABLE: Drug design benefits from advances = *“* tobeotinieres
. . Ref. Aspuru-Guzik
in methods and enabling scalable systems software
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National Virtual Biotechnology Lab (NVBL)

e National Virtual Biotechnology Lab (NVBL)
o https://science.osti.gov/nvbl

e Aid U.S. policymakers in responding to the
COVID-19 pandemic with epidemiological
information for decision making

e Accelerate production of critical medical
supplies across the nation

e Supercomputing and artificial intelligence
for design of targeted therapeutics

e Leverage chemical testing & analysis to
facilitate new antigen and antibody testing

NVBL given US Secretary of Energy Honour
BROOKHFPMEN  Award (202 1)
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https://science.osti.gov/nvbl

Computer Systems Perspective

e Current trends towards performance and scale unsustainable
o Complex scientific algorithms, code, impl. exposed to architectural churn
o Beyond single task performance; think collective performance

Projected Performance Development
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Computer Systems Perspective

e Current trends towards performance and scale unsustainable
o Complex scientific algorithms, code, impl. exposed to architectural churn
o Beyond single task performance; think collective performance

e Al-driven HPC algorithms and methods enhance effective performance of
traditional HPC simulations



Learning Everywhere: Coupling ML and HPC

Three representative coupling ML and HPC (MLxHPC)

e Emulate simulations and reduce cost of computation (MLinHPC)
o Learn the function representing the output of a simulation to determine the
parameters or the effective fields; symbolic regression examples

e Use ML to determine next set of simulations (MLaboutHPC)
o Learning to configure, steer and select simulations concurrently

e Improving effective performance of campaigns (MLoutHPC)
o Optimal Design of Experiments; Reinforcement / Active Learning; as
simulations proceed, improve (different) models
o Bayesian Optimization; Pareto efficiency

More details in the “Learning Everywhere” Trilogy (Fox & Jha): (i) https://arxiv.org/abs/1902.10810 (IPDPS-W 2019) (ii)
https://arxiv.org/abs/1909.02363 “Understanding ML driven HPC: Applications and Infrastructure” (iii) https://arxiv.org/abs/1909.13340 “A
Taxonomy for the Integration of Machine Learning and Simulations” (IEEE eScience Vision Track 2019)
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Learn Surrogates for Simulations
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https://arxiv.org/abs/2001.08055

Learn Surrogates for Simulations
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https://arxiv.org/abs/2001.08055

Learn Surrogates for Simulations: Potentials

Data
Generator

'DeePMD-kit
MD support

MD Interface
MILJ HILE (&

A

TensorFlow lib

standard Tensor OP
& Compt. Graph

S o7

Data

Model

‘DeePMD-kit
~ Train/Test
' =
s
m
(o]
M
re o
S )

DeePMD-kit lib
s descript OP, force OP,

& virial OP

1ns for 100 million atoms
https://arxiv.org/pdf/2005.00223.pdf



Computer Systems Perspective

e Current trends towards performance and scale unsustainable
o Complex scientific algorithms, code, impl. exposed to architectural churn
o Beyond single task performance; think collective performance

e Al-driven HPC algorithms and methods enhance effective performance of
traditional HPC simulations
o Will be formulated as heterogeneous and adaptive workflows



IMPECCABLE: Hit-to-Lead Phase

Multi-stage campaign employed to
select promising drug candidates:

e WF1: High-throughput ensemble vdi »| FOMACS
docking to identify small molecules
(“hitS”) | Hitﬁo Lead

e WF2: Al-driven Molecular Dynamics MLDockng| | e
for modeling specific binding regions S Sampiing
and understanding mechanistic
changes involving drugs ORI 1: EMACS

e WF3: Binding Free Energy
calculations of promising leads
(“Hit-to-Lead”)

https://arxiv.org/abs/2010.06574

BROOKHFAEN ESMACS based free-energy
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Ensemble Docking:

rec-00 rec-16 Ensemble \ »| ESMACS
o rec-01 rec-17 Docking CG
rec-02 rec-18
rec-03 rec-19
3000 rec-04 rec-20 Hit to Lead I
rec-05 rec-21 ] Loop ML-driven
rec-06 rec-22 ML Docking Enhanced
o0, rec-07 rec-23 Surrogate Sampling
rec-08 rec-24
rec-09 rec-25
i rec-10 rec-26 ESMACS |
rec-11 rec-27 FG -

‘;‘.‘,.'
"I“‘Hl Iﬂ T‘T! it L’x

rec-12

| rec-13

rec-14
rec-15

rec-28
rec-29
rec-30
rec-31

W i

] 200 400 600
duration (s]

1000

e Docking: OpenEye; Library (ORD): 6.25M ligands (drug candidate); 32 targets/receptors
Fluctuations in docking execution time library (ORD) for different receptors

@)
@)

O
(@)

Long-tailed Tx for different ligands for a given target (receptor)

Many work items (function calls) need to be distributed

Call duration varies two order of magnitudes (1-100s). Mean duration 8s.
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Ensemble Docking: (WF1)
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e Docking: OpenEye; Library (ORD): 6.25M ligands (drug candidate); 32 targets/receptors
o Fluctuations in docking execution time library (ORD) for different receptors
o Long-tailed Tx for different ligands for a given target (receptor)

o Many work items (function calls) need to be distributed

o . Call duration varies two order of magnitudes (1-100s). Mean duration 8s.
BRODIRRVEN,



Learnt Surrogates for Simulations: Docking
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https://arxiv.org/abs/2106.07036 led by Austin Clyde (ANL)
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https://arxiv.org/abs/2106.07036

ML-driven Ensemble (WF2): 10-100x Sampling

e ML-driven-HPC motif: Dynamically steer
ensemble-based simulations; large improvements
in the performance of scientific applications

e DeepDriveMD (DDMD) supports ML-driven-HPC
motif at scale, invariant of type, frequency, and
degree of coupling of ML and HPC simulations

Interesting conformational states sampled
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IMPECCABLE: Integrated Modeling

Results from S3-CG and S3-FG
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IMPECCABLE: Integrated Modeling Pipeline

Why is this challenging? No turnkey solutions! 1000x variation in workflow throughput
o Hete rogeneous at mu|t|p|e Ievels Table 3: Throughput and performance measured as peak flop
per second (mixed precision, measured over short but time in-
© COU pled AI_H PC (WFZ) terval) per Summit node (6 NVIDIA V100 GPU).
o High-throughput function calls (WF1) Comp. [ #GPUs “Topls  Throughput
o EnSmeleS of MPI t_aSKS (VV_F3_/4) MLI 1536 753.9 319674 ligands/s
o Spatio-temporal variation within each S1 6000 1125 14252 ligands/s
S3-CG | 6000 2779 2000 ligand/s
e Collective versus single-task performance BFC| 00 7324  20lgands
o Campaigns are ”integfa.ted” workflows: WF1 107x variation in cost across workflows
and WF4 differ by 10"x in computational cost
o PrOducerS Of data (WF1 ) and consumers Table 2: Normalized computational costs on Summit.
ML1 Method Nodes per Hours per Node-hours
( ) ligand ligand per ligand
. . . (approx)
e Adaptive Execution at multiple levels TR e 000l 00001
o  Workload: Task mix varies over campaign Aty ; e %
. . Ad. Sampling (S2) 2 2 -+
o Tasks: Run for varying duration BFE-FG (S3-FG) 4 1.25 5
BFE-TI (not integrated) 64 10 640

BROOKHFAEN
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Computational Challenges: Heterogeneity

e Heterogeneity of different types and at multiple levels
o Coupled Al-HPC (WF2)
o High-throughput function calls (WF1)
o Ensembles of MPI tasks (WF3/4)

e Spatio-temporal variation within and across WF1

HPC Platform Facility Batch  Node Architecture Workflows Max # nodes

System CPU GPU utilized
Summit OLCF LSF 2 X POWERO9 (22 cores) 6 x Tesla V100 WF1-4 2000
Lassen LLNL LSF 2 X POWERD9 (22 cores) 4 x Tesla V100 WF2,3 128
Frontera TACC Slurm 2 X x86_64 (28 cores) — WF1 7650
Theta ALCF Cobalt 1 xx86_64 (64 cores) — WF1 256
SuperMUC-NG LRZ Slurm 2 X x86_64 (24 cores) — WF3-4 6000 (with failures)

\IBBOOI(III-'AIEN
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Computer Systems Perspective

e Current trends towards performance and scale unsustainable
o Complex scientific algorithms, code, impl. exposed to architectural churn
o Beyond single task performance; think collective performance

e Al-driven HPC algorithms and methods enhance effective performance of
traditional HPC simulations
o Will be formulated as heterogeneous and adaptive workflows

e RADICAL rethink of extreme-scale programming and systems software
o #1 — Workflows as an extreme-scale programming paradigm
o #2 — Systems software evolve in response to Al-driven HPC algorithms.



RADICAL-Cybertools (RCT): Middleware Building Blocks

o
o
Workflow middleware building blocks: integrate with existing software ecosystem o2 O?D\)
o
Implemented in Python; designed for performance on leadership-class platforms ro":;;’l
e RADICAL-EnsembleToolkit (EnTK) <
o ‘Ensemble’ as first-order abstraction L4 Stage 1/2/3/4 g3
e RADICAL-Pilot (RP) L " g
o Pilot system; workload and task execution management L3 RADICAL-EnTK 5
e RADICAL-SAGA (RS): Batch-system interface; Interoperability layer s
Aopications o RCT Available via the ExaWorks SDK: (R ADICAL-Pilot ) @
https://github.com/ExaWorks/Exa\Works-SDK »
s N e N5/ 03
Componeres o RCT can leverage Flux and other specialized )
i | capabilities; designed to be interoperable RAD'CAL'IS_A?A
Test _W%ﬂoms—& Package L1 HPC and Distributed §
Infrastructures 7

Components
% Build <

Exascale Systems


https://github.com/ExaWorks/ExaWorks-SDK

RADICAL-Pilot (RP) with RAPTOR : System View
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One or more Master tasks are:
scheduled, placed and launched.
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e Master Task Il and are
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Master Task ] Once the Master and Worker tasks
- are successfully bootstrapped,

Worker Task each Master directly coordinates

MPI Task ] its pool of Workers.
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Ensemble Docking (WF1) with RAPTOR

Launch/Compute node
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RAPTOR : Performance
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3  Frontera OpenEye 8336 1 13 451 63% / 98% 219.0 25.3 91.8 11.0
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Characterizing RP on Leadership Platforms

ID HPC #Tasks #Generations Task #Cores/ #GPUs/ #Cores/Pilot #GPUs/Pilot
Platform Runtime Task Task
1 Titan 2":n=[5—12 1 - 2":n =[10 — 17 -
2 Titan 914 [ : o o (53] 828s+14s 32 gn {1,1 16%
3 Summit 3098; 12,276 1 600s — 900s 1-—42 0;6 : .
4  Summit  24,552;24,784 ~2:8 500s — 600s 1—42  0:6 42,0085 172,074 Blad;a%, u5d
o FlUlll,Cld. 1Z0 X J.UQ ~ JUU 1S — 124U5 2z = Ogé,UUU 3
Pilot Startup Warmup Idle — Prepare Exec Exec Cmd
_ Experiment 3 3098 Tasks / 1024 Nodes Experiment 3 12,276 Tasks / 4097 Nodes xpeime4 24,784 Tasks / 1024 odes Experiment 4 4 2 Tasks / 4097 odes i
¥ & & = 3
]
i
0 : : 3 0 g o :
0 100 200 300 400 500 600 700 800 900 O 200 400 600 800 1000 1200 0 1000 2000 3000 4000 5000 0 500 1000 1500 2000 2500 3000
Time (s) Time (s) Time (s) Time (s)
(@) () ©) @
BROOKHAUEN https://arxiv.org/abs/2103.00091

NATIONAL LABORATORY



One RP, Many task execution modes

ID HPC #Tasks #Generations Task #Cores/ #GPUs/ #Cores/Pilot #GPUs/Pilot
Platform Runtime Task Task

1 Titan 2":n =[5 —12 1 - 2":n = [10 — 17 -

Py Titan ol4 [ : o (53] 828s+14s 32 N E” 16%

3 Summit 3098;12,276 1 600s — 900s 1—42 0;6 . .

4  Summit  24,552;24,784 ~2:8 5005 — 600s 1 — 42 0:6 42,0085 172,074 Blad;os; gl

o FlUlllCld. 1Z0 X lUc ~ JUU 1S — 14US5 fi B = Ogé,UUU .

Balance Performance vs Generality
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Impacting SARS-CoV-2 Medical Therapeutics 2\

radical
* Scale Of Oﬂeratlor_‘: . Fig. 4. Conformational changes upon MCULE-
~1 0 DOCk|ng CaICUIat|OnS 5948770040 binding to MP™ indicate changes within

~ 3 i I distinct regions, both close-to and farther-away from
;O 1I\O/I4L-Bd.rl\é.en I\I/_lD CaéCUIatlo?:S | | t the primary binding site. (a) RMS fluctuations of the
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https.//www.biorxiv.org/content/10.1101/2021.03.27.437323v2
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Optimal Experiment Design for Drug Design

» Given a set of drug candidates and computationally expensive protocols, what
mixture of protocols and parameters optimizes the use of constrained
computational resources?

comp. cost: ¢y comp. cost: c2 comp. cost: c3 comp. cost: ca
Input Potential
Stage 1 Stage 2 Stage 3 Stage 4
molecule i target
threshold: A, 3 threshold: A, 3 threshold: A5 5 threshold: A, ‘
15t stage score: y; 2nd stage score: y, 3rd stage score: y3 4th stage score: y,

* Four-stage campaign employed to select promising drug candidates

" ——w—— 1 Stage-1 Docking: Al-driven virtual screening to rapidly identify small molecules

Stage-3 Hit-to-Lead: BFE calculations of promising candidates using ESMACS

‘ Stage-2 Enhanced Sampling: Modeling binding regions and mechanistic changes
- @ @ g pling g g reg g

E Stage-4 Lead Optimization: BFE calculations of promising candidates using TIES



Summary

Drug Discovery & Design is a complex & expensive
o Methodological, Mathematical, Infrastructure
o IMPECCABLE uses scalable computing & ML

to enhance the effective performance

Developed 1%t gen of Al-HPC infrastructure
o Evolve with sophistication of Al-HPC methods

m " .... Simulations are mere generators of
data for powerful ML models”!

Rethink systems software ecosystem
o Not just performance of single tasks; collective

perf. of heterogeneous workflows
o Advances in adaptive runtime systems
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