
I/O for Deep

Learning at Scale

Quincey Koziol

Principal Data Architect, NERSC

koziol@lbl.gov

IXPUG, September 24, 2019

Acknowledgments

• Prabhat, Wahid Bhimji, Debbie Bard, Thorsten Kurth,

Jialin Liu (NERSC)

• Mike Houston, Sean Treichler, Josh Romero (NVIDIA)

• Lei Shao (Intel)

• Pete Mendygral, Mike Ringenburg (Cray)

• Gunes Baydin (Oxford)

Outline

• Introduction to NERSC

• Deep Learning for Science

• Case Studies
– Exascale Climate Analytics

– etalumis

• I/O Challenges for DL @ Scale

• Conclusions

NERSC: the Mission HPC Facility for DOE

Office of Science Research

Bio Energy, Environment Computing

Particle Physics, Astrophysics

Largest funder of physical

science research in the U.S.

Nuclear Physics

7,000 users, 800 projects, 700 codes, 48 states, 40 countries, universities & national labs

Materials, Chemistry, Geophysics

Fusion Energy, Plasma Physics

Cori supports Simulation and Data Workloads

• Phase I: 2388 Intel Xeon “Haswell” nodes

• Phase II: 9688 Intel Xeon Phi “KNL” nodes

• 1.5 PB NVRAM Burst Buffer, supporting 1.5TB/s I/O rates

Outline

• Introduction to NERSC

• Deep Learning for Science

• Case Studies
– Exascale Climate Analytics

– etalumis

• I/O Challenges for DL @ Scale

• Conclusions

Data Analytics Methods

AI

Machine Learning

Deep

Learning

Graph

Analytics

Statistics

Image/Signal

Processing

Linear

Algebra

NERSC Big Data Stack

Capabilities Technologies

Data Transfer + Access

Workflows

Data Management

Data Analytics

Data Visualization

taskfarmer

NERSC Deep Learning Stack

Technologies

Deep Learning

Frameworks

Multi Node libraries

Single Node libraries

Hardware

GRPC

Horovod

CNTK, MXNet, Neon, …

CuDNNMKL-DNN

CPUs (KNL) GPUs FPGAs Accelerators

MPI

Cray Plugin

MLSL

Deep Learning for Science

Modeling galaxy shapes

Oxford Nanopore sequencing

Decoding speech from ECoGGenerating cosmology mass maps

Clustering Daya Bay events LHC Signal/Background classification

https://www.oreilly.com/ideas/a-look-at-deep-learning-for-science

https://www.oreilly.com/ideas/a-look-at-deep-learning-for-science

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

✗ ✗

✗ ✗ ✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗

Classification

Regression

Clustering

Dimensionality

Reduction

Surrogate

Models

Design of

Experiments

Feature

Learning

Anomaly

Detection

HEP BER BES NP FES

Astronomy Cosmology Particle

Physics

Climate Genomics Light

Sources
Materials Heavy

Ion

Colliders

Plasma

Physics

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

✗ ✗

✗ ✗ ✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗

Classification

Regression

Clustering

Dimensionality

Reduction

Surrogate

Models

Design of

Experiments

Feature

Learning

Anomaly

Detection

HEP BER BES NP FES

Astronomy Cosmology Particle

Physics

Climate Genomics Light

Sources
Materials Heavy

Ion

Colliders

Plasma

Physics

CNNs, Graph NNs, RNNs

Auto-encoders

VAEs, GANs

RL

?
✔️

DL adoption by NERSC user community

• ~200 users exercising the DL stack

• 160 respondents to 2018 ‘ML@NERSC’ survey

Why Scale Deep Learning?

• Day / Week-long runtimes for O(100) GB - O(1) TB
sized datasets

– ‘Classical’ convolutional architectures

– More advanced architectures (Hybrid CNN + LSTM,
spacetime convolutions)

• Hyper-Parameter optimization is important

• Large computational demands

• Problem is well suited for HPC systems

Outline

• Introduction to NERSC

• Deep Learning for Science

• Case Studies
– Exascale Climate Analytics

– etalumis

• I/O Challenges for DL @ Scale

• Conclusions

Characterizing Extreme Weather…

- 17 -

… in a changing Climate

- 18 -

Understanding Climate Change

• How will the global weather change by 2100?

– Will the Earth warm up by 1.5 or 2.0 C?

– Will the sea level rise by 1 or 2 feet?

• How will extreme weather change by 2100?
– Will there be more hurricanes?

– Will they become more intense?

– Will they make landfall more often?

– Will atmospheric rivers carry more water?

– Will they make landfall over California?

– Will they mitigate droughts?

– Will they cause heavy precipitation and flooding?

Climate Science Deep Learning Tasks

- 20 -

Liu, et al

ABDA’16

Racah, et al

NIPS’17

Racah, et al, NIPS’17

Kurth, et al, SC’17

Kurth, et al, SC’18

Extreme Scaling

• 4560 Summit nodes, 27,360 Volta GPUs, @ ORNL

• 1.13 EF peak performance (16-bit)

On-Node I/O Pipeline

• Files are in HDF5 with single sample + label/file

• List of filenames passed to TensorFlow Dataset API
(tf.data)

• HDF5 serialization bottleneck addressed with
multiprocessing

• Extract and batch using tf.data input pipeline
...

data-2107-12-26-02-4.h5

data-2107-12-26-03-1.h5

data-2107-12-26-03-4.h5

data-2107-12-26-04-1.h5

data-2107-12-26-04-4.h5

data-2107-12-26-05-1.h5

data-2107-12-26-05-4.h5

data-2107-12-26-06-1.h5

data-2107-12-26-06-4.h5

data-2107-12-26-07-1.h5

...

...

data-2107-03-03-06-1.h5

data-2107-05-24-00-4.h5

data-2107-08-30-03-4.h5

data-2107-10-29-01-4.h5

data-2107-12-11-07-1.h5

data-2107-08-14-03-4.h5

data-2107-01-08-01-4.h5

data-2107-09-08-04-1.h5

data-2107-09-22-00-1.h5

data-2107-07-16-03-4.h5

...

shuffle

4-way

parallel

read +

preprocess

batch

Data Management Overview

• Shuffling / loading / preprocessing / feeding 20 TB dataset

– Ensure that composition of a batch is random

• Sustained Bandwidth
– ~61 MB/sample × ~65,000 samples/s @ 27K GPUs → ~3.8 TB/s

– Typical distributed FS bandwidth: ~400 GB/s → ~8x performance gap

– Typical Burst Buffer bandwidth: ~2 TB/s → ~2x performance gap

• Random reads / no writes:
– Modern HPC file systems are not optimized for this!

• Must work around HDF5 library limitations

– No threading support 

• Use available tools/packages to achieve this along with
recommended TensorFlow data ingestion method

Data Staging

• 250 training samples/GPU (~15 GB),
sample w/replacement

• Each file will be read at most once
from FS

• Files shared between nodes via MPI
(mpi4py) 25

Dataset Size Required BW

(27K GPUs)

GPFS/LUSTRE BurstBuffer NVMe or DRAM

20 TB (~63K

samples)

3.8 TB/s ~400 GB/s ~2 TB/s ~26 TB/s

N

V

M

e

N

V

M

e

N

V

M

e

...

shuffle

Outline

• Introduction to NERSC

• Deep Learning for Science

• Case Studies
– Exascale Climate Analytics

– etalumis

• I/O Challenges for DL @ Scale

• Conclusions

Probabilistic Programming
and High-Energy Physics

- “etalumis”

Baydin, A.G., Heinrich, L., Bhimji, W., Gram-Hansen,

B., Louppe, G., Shao, L., Prabhat, Cranmer, K., Wood,

F. 2018. Efficient Probabilistic Inference in the

Quest for Physics Beyond the Standard Model

arXiv preprint arXiv:1807.07706.

https://arxiv.org/abs/1807.07706

28

https://arxiv.org/abs/1807.07706

etalumis

HEP packages like

● SHERPA

● GEANT

● PYTHIA

● Herwig++

● MadGraph

are essentially very accurate probabilistic algorithms

We focus our attention to SHERPA (C++)

29

We run etalumis code on Cori at NERSC using Shifter:
shifterimg -v pull docker:etalumis/sherpa:latest

Common trace types in SHERPA
440 trace types (address sequences) encountered over 1.6M executions

Trace type: unique sequencing of addresses (with different sampled values)

... 30

Accessing the Trace Training Data

• etalumis’ 15m test dataset

• 1.7TB, with 15 million trace files, each averaging 110KB

• Stored on Lustre file system on Cori, with another copy in Burst

Buffer

• For each training iteration, each process reads in a local-

batch # of traces, e.g., 64 traces

• For each iteration, the global batch size is <# of ranks> *

<local batch size>, e.g., 1024 * 64 = 64k

• Initially, I/O in etalumis is similar to HPC file-per-process

access
31

Common trace types in SHERPA
440 trace types (address sequences) encountered over 1.6M executions

32

I/O Challenges:
• Random access due to shuffling each iteration and epoch
• Number of input files is large
• No parallel I/O support in current DL system, e.g., PyTorch

File Format Challenges:
• Complex data and file structure

• Data duplication

Data and I/O Challenges

Metadata Optimization

Merge Many Small Files into Few Large Files
• Original: 15 million files, w/1 trace per file
• After Merging: 150 files, w/100k traces per file

File Handle Caching

• Maintain cache of file handles

• Keep file open during training

34

Data I/O Optimization

Trace Structure Pruning
• Remove unnecessary data structures

– Disk space and memory consumption savings
Sorting

• Offline sorting based on controlled address length
– Random access → sequential access

Distributed I/O Loading
• Implementation based on PyTorch’s Sampler
• Round-robin assign local batches to each worker
• Shuffle within each worker’s local batch list

35

Efficient I/O  Scalable Training

36

Before:

>75% of total
runtime
spent in I/O

After:

I/O reduced
to <5%

Outline

• Introduction to NERSC

• Deep Learning for Science

• Case Studies
– Exascale Climate Analytics

– etalumis

• I/O Challenges for DL @ Scale

• Conclusions

I/O Challenges for DL @ Scale

• DL I/O workloads are extremely demanding, with both
Data and Metadata Issues:

• Lustre and GPFS file systems typically can’t keep up
– Burst Buffer and node-local NVMe storage have been critical

HPC Simulation Deep Learning

Write-Once / Read-Never Write-Once / Read-Always

Contiguous Large I/O to

Sequence of Files

Random Small I/O to

Random Files

O(10) of TBs in

O(1000) files

O(10) of TBs in

O(100,000) files

I/O Challenges for DL @ Scale

• Applications are very young and unstable
– DL frameworks only 2-3 years old, may not last another 2-3

– Many load imbalances in compute, communication, and I/O

– Come from a culture of academia & industry, not HPC centers
• Still ”learning to scale”

• Data Management & I/O are not “hot topics”
– I/O is typically last consideration for application developer

– I/O isn’t “interesting”, just “infrastructure”

• Ingest pipelines for loading scientific data (HDF5,
NetCDF, …) into DL frameworks are not optimized

– Need multi-threaded support, different tuning, etc.

Outline

• Introduction to NERSC

• Deep Learning for Science

• Case Studies
– Exascale Climate Analytics

– etalumis

• I/O Challenges for DL @ Scale

• Conclusions

Conclusion

C / C++ / FORTRAN

Application

High-Level I/O

Middleware

Low-Level I/O

Middleware

Parallel File System

Disk

HPC / Simulation

HDF5, netCDF,

ROOT, etc.

MPI-IO, POSIX,

etc.

Lustre, GPFS, …

H5part, EOS-

HDF5, etc.

Domain-Specific I/O

Wrapper

Conclusion

C / C++ / FORTRAN

Application

Disk

HPC / Simulation

Python / Julia / …

Application

Domain-Specific

Wrapper

???

???

???

???

Deep Learning / Analytics

High-Level I/O

Middleware

Low-Level I/O

Middleware

Parallel File System

HDF5, netCDF,

ROOT, etc.

MPI-IO, POSIX,

etc.

Lustre, GPFS, …

H5part, EOS-

HDF5, etc.

Domain-Specific I/O

Wrapper
TensorFlow,

PyTorch, Caffe, …

Conclusion

We need a new I/O Middleware Stack for DL workloads!

C / C++ / FORTRAN

Application

Domain-Specific I/O

Wrapper

Disk

HPC / Simulation

Python / Julia / …

Application

Deep Learning I/O

Middleware

Low-Level I/O

Middleware

Object Store

(DAOS, Rados, …)

NVRAM

Deep Learning / Analytics

Adapt HDF5 or

create new?

Need something

like MPI-IO

Read-heavy; high data

and metadata rates

IOPs & Random I/O

High-Level I/O

Middleware

Low-Level I/O

Middleware

Parallel File System

HDF5, netCDF,

ROOT, etc.

MPI-IO, POSIX,

etc.

Lustre, GPFS, …

Domain-Specific

Wrapper
TensorFlow,

PyTorch, Caffe, …
H5part, EOS-

HDF5, etc.

Questions?

koziol@lbl.gov

mailto:prabhat@lbl.gov

