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NERSC: the Mission HPC Facility for DOE
Office of Science Research

Science science research in the U.S.
- Bk

Particle Physics, Astrophysics Nuclear Physics Fusion Energy, Plasma Physics

7,000 users, 800 projects, 700 codes, 48 states, 40 countries, universities & national labs
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* Phase I: 2388 Intel Xeon “Haswell” nodes
* Phase Il: 9688 Intel Xeon Phi “KNL” nodes
1.5 PB NVRAM Burst Buffer, supporting 1.5TB/s /0 rates
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Data Analytics Methods

Machine Learning

Graph
Analytics

Image/Signal
Processing

Linear
Algebra
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NERSC Big Data Stack

Capabilities Technologies

Data Transfer + Access & GridFTP JUle'fEr m
globus online

A
Workflows FireWorkgy taskfarmer
T, T
| |
mnetCDF

Data Management R
.mongo MySQaL 'ﬁ @

PostgreSQL

pg@on Spork ‘ * PYTHRCH

TensorFlow
[
@ julia M cafre
Data Visualization - ”’ ParaView
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NERSC Deep Learning Stack U= Ele

e

Technologies

Deep Learning ,
TensorfFlow

Single Node libraries [ MKL-DNN] -

U.S. DEPARTMENT OF ' Office of

ENERGY ' Science

Multi Node libraries




Deep Learning for Science

" s
i\ R
“taall AhLhA 1ALk 1N
R =
% - ==
: sl —
Generating cosmology mass maps Decoding speech from ECoG

Clustering Daya Bay events LHC Signal/Background classification ~©OXford Nanopore sequencing
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HEP BER BES NP FES
Astronomy | Cosmology | Particle | Climate | Genomics | Light Materials | Heavy Plasma
Physics Sources lon Physics

Colliders

Classification

X

Regression
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Dimensionality
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Models X X X X X
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Experiments
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Anomaly X X X X

Detection
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Astronomy | Cosmology | Particle | Climate | Genomics | Light Materials | Heavy Plasma

Physics Sources lon Physics
Colliders

Classification

CNNs, Graph NNs, RNNs

Regression

Clustering

Auto-encoders

Dimensionality
Reduction

Surrogate

e VAES, GANS

e

Design of
Experiments R L
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DL adoption by NERSC user community

* ~200 users exercising the DL stack
* 160 respondents to 2018 ‘ML@NERSC’ survey

Counts

100
100 | 99 (61%) How long does it take to train 88 (54%) What is your training dataset size?
your models on a single node?
801 74 (46%)
80 -
" 60 -
60 - E
48 (30%
47 (29%) (30%) 3 " 40 (25%)
40 -
20 20 4 16 (10%) 17 (10%)
11 (7%)

>10TB

0 0O(1) GB 0(10) GB 0(100) GB  0O(1-10) TB

Minutes Hours Days Weeks
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Why Scale Deep Learning?

* Day / Week-long runtimes for O(100) GB - O(1) TB
sized datasets

— ‘Classical’ convolutional architectures

— More advanced architectures (Hybrid CNN + LSTM,
spacetime convolutions)

* Hyper-Parameter optimization is important
* Large computational demands

* Problem is well suited for HPC systems
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Characterizing Extreme Weather...




\L
... in a changing Climate E‘E

Preliminary CAMS5 hi-resolution simulations
(0.25°, prescribed aerosols)

Michael Wehner, Prabhat, Chris Algieri, Fuyu Li, Bill Collins
Lawrence Berkeley National Laboratory

Kevin Reed, University of Michigan

Andrew Gettelman, Julio Bacmeister, Richard Neale
National Center for Atmospheric Research

June 1, 2011
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Understanding Climate Change

— T T T T T T T T T T T T T T T

- How will the global weather change by 2100? - =&,
— Will the Earth warm up by 1.5 or 2.0 C? R
— Will the sea level rise by 1 or 2 feet?

T

- How will extreme weather change by 2100?
— Will there be more hurricanes?

— Will they become more intense?

— Will they make landfall more often?

— Will atmospheric rivers carry more water?
— Will they make landfall over California?

— Will they mitigate droughts?

— Will they cause heavy precipitation and flooding? & |
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Climate Science Deep Learning Tasks Ne

Classification Obiect Detection Instance
+ Localization J Segmentation

W Bl - % b .
~

Classification

Liu, et al Racah, et al Racah, et al, NIPS’'17
ABDA'16 NIPS17 Kurth, et al, SC’17

U.S. DEPARTMENT OF Office of
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Extreme Scaling

80000 +
| ¥y DeeplLabv3+ V100-FP16, lag 1
70000 - Deeplabv3+, V100-FP16, lag O | 1000
| m®m Deeplabv3+, V100-FP32, lag1 .
60000 - DeeplLabv3+, V100-FP32,1ag 0 _
] - 800
«» 50000 -
o | O
40000 - -600 =
(ol
E | |
30000i 1400
20000 - _
| - 200
10000 + i
0 m

: . : . ‘ 0
0 5000 10000 15000 20000 25000 30000
#GPUs

e 4560 Summit nodes, 27,360 Volta GPUs, @ ORNL
e 1.13 EF peak performance (16-bit)
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On-Node I/O Pipeline

* Files are in HDF5 with single sample + label/file

* List of filenames passed to TensorFlow Dataset API

(tf.data)

e HDF5 serialization bottleneck addressed with

multiprocessing

e Extract and batch using tf.data input pipeline

data-2107-12-26-02-4.h5 data-2107-03-03-06-1.h5

data-2107-12-26-03-1.h5 data-2107-05-24-00-4.h5
data-2107-12-26-03-4.h5 data-2107-08-30-03-4.h5
data-2107-12-26-04-1.h5 data-2107-10-29-01-4.h5
data—2107—12—26—04—4.h5Shufﬂedata—2107—12—11—07—1.h5
data-2107-12-26-05-1.h5 data-2107-08-14-03-4.h5
data-2107-12-26-05-4.h5 _ data-2107-01-08-01-4.h5
data-2107-12-26-06-1.h5 data-2107-09-08-04-1.h5
data-2107-12-26-06-4.h5 data-2107-09-22-00-1.h5
data-2107-12-26-07-1.h5 data-2107-07-16-03-4.h5

Office of
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Data Management Overview

- Shuffling / loading / preprocessing / feeding 20 TB dataset

— Ensure that composition of a batch is random

- Sustained Bandwidth
—~61 MB/sample x ~65,000 samples/s @ 27K GPUs - ~3.8 TB/s
— Typical distributed FS bandwidth: ~400 GB/s - -performance gap
— Typical Burst Buffer bandwidth: ~2 TB/s - ~2x performance gap

* Random reads / no writes:

— Modern HPC file systems are not optimized for this!

* Must work around HDF5 library limitations
— No threading support ®

- Use available tools/packages to achieve this along with
recommended TensorFlow data ingestion method

ST, . - = A
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Data Staging

Dataset Size Required BW GPFS/LUSTRE BurstBuffer NVMe or DRAM
(27K GPUSs)

20 TB (-63K 3.8 TB/s ~400 GB/s ~26 TB/s

samples)

« 250 training samples/GPU (~15 GB),
sample w/replacement

 Each file will be read at most once
from FS

« Files shared between nodes via MPI
(mpi4py)

IR
£ \&
4 (7))
R &

DiTys Ok
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Probabilistic Programming
and High-Energy Physics
- “etalumis”




Baydin, A.G., Heinrich, L., Bhimji, W., Gram-Hansen,
B., Louppe, G., Shao, L., Prabhat, Cranmer, K., Wood,
F. 2018. Efficient Probabilistic Inference in the
Quest for Physics Beyond the Standard Model
arXiv preprint arXiv:1807.07706.

https://arxiv.org/abs/1807.07706

arXiv.org > cs > arXiv:1807.07706 Search or Article

(Help | Advanced sea

Computer Science > Machine Learning

Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model

Afilim Gunes Baydin, Lukas Heinrich, Wahid Bhimiji, Bradley Gram-Hansen, Gilles Louppe, Lei Shao, Prabhat, Kyle Cranmer, Frank Wood
(Submitted on 20 Jul 2018)

We present a novel framework that enables efficient probabilistic inference in large-scale scientific models by allowing the execution of existing domain-specific
simulators as probabilistic programs, resulting in highly interpretable posterior inference. Our framework is general purpose and scalable, and is based on a
cross-platform probabilistic execution protocol through which an inference engine can control simulators in a language-agnostic way. We demonstrate the

technigue in particle physics, on a scientifically accurate simulation of the tau lepton decay, which is a key ingredient in establishing the properties of the Higgs
boson. High-energy physics has a rich set of simulators based on quantum field theory and the interaction of particles in matter. We show how to use probabilistic
programming to perform Bayesian inference in these existing simulator codebases directly, in particular conditioning on observable outputs from a simulated

particle detector to directly produce an interpretable posterior distribution over decay pathways. Inference efficiency is achieved via inference compilation where a
deep recurrent neural network is trained to parameterize proposal distributions and control the stochastic simulator in a sequential importance sampling scheme,

at a fraction of the computational cost of Markov chain Monte Carlo sampling. 28
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etalumis

HEP packages like
SHERPA
GEANT
PYTHIA
Herwig++

e MadGraph
are essentially very accurate probabilistic algorithms

We focus our attention to SHERPA (C++)

We run etalumis code on Cori at NERSC using Shifter:
shifterimg -v pull docker:etalumis/sherpa:latest

29
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Common trace types in SHERPA

440 trace types (address sequences) encountered over 1.6M executions
Trace type: unique sequencing of addresses (with different sampled values)

Freq. Length Addresses (showing controlled only)

0.106 72 Al, A2, A3, A5, A6, A32, A33, A3l

0.105 41 Al, A2, A3, A5, A6, A499, A3l

0.078 1,780 Al, A2, A3, A5, A6, A7, A8, A9, A10, A3l

0.053 188 Al, A2, A3, AS, A6, A7, A8, A9, A10, A17, Al8, A26, A31

0.053 100 Al, A2, A3, A5, A6, A7, A8, A9, A10, A17, Al8, A99, A100, A101, A102, A31]
0.039 56 Al, A2, A3, A5, A6, A499, A17, A18, A26, A3l

0.039 592 Al, A2, A3, A5, A6, A499, A17, A18, A99, A100, A101, A102, A31

0.038 162 Al, A2, A3, A5, A6, A7, A8, A9, A10, A17, A500, A99, A100, A101, A102, A31

0.030 240 Al, A2, A3, A5, A6, A7, A8, A9, A10, A17, Al18, A20, A21, A41, A42, A26, A99, A100,
A101, A102, A31

0.029 836 Al, A2, A3, A5, A6, A7, A8, A9, A10, A17, A18, A20, A21, A4l, A42, A99, A100, A101,
A102, A26, A3l

0.027 643  Al, A2, A3, A5, A6, A7, A8, A9, A10, A17, A507, A99, A100, A101, A102, A31

0.023 135  Al, A2, A3, A5, A6, A7, A8, A9, A10, A17, A8, A20, A21, A4l, A42, Ad4, A45, A26, A9,
A100, A101, A102, A31

0.023 485  Al, A2, A3, A5, A6, A7, A8, A9, A10, Al7, A8, A20, A21, Adl, Ad2, Add, A45, A99, A100,
A101, A102, A26, A31 20
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Accessing the Trace Training Data L s

e etalumis’ 15m test dataset
e 1.7TB, with 15 million trace files, each averaging 110KB

e Stored on Lustre file system on Cori, with another copy in Burst
Buffer

e For each training iteration, each process reads in a local-
batch # of traces, e.g., 64 traces

e For each iteration, the global batch size is <# of ranks> *
<local batch size>, e.g., 1024 * 64 = 64k

e Initially, I/O in etalumis is similar to HPC file-per-process
access

31
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Common trace types in SHERPA

440 trace types (address sequences) encountered over 1.6M executions

1071 E

1072 E

ot

S
L
]

Frequency

=

9
s
|

10— E

10~% =

0 100 200 300 400
Unique trace ID

(c) Distribution of trace types, sorted in decreasing frequency.
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Data and I/O Challenges

1/0 Challenges:

Random access due to shuffling each iteration and epoch

Number of input files is large

No parallel I/O support in current DL system, e.g., PyTorch
File Format Challenges:

Complex data and file structure

Data duplication

Office of
Science




Metadata Optimization

Merge Many Small Files into Few Large Files
. Original: 15 million files, w/1 trace per file
- After Merging: 150 files, w/100k traces per file

File Handle Caching
- Maintain cache of file handles
- Keep file open during training

Office of
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Data I/O Optimization

Trace Structure Pruning
- Remove unnecessary data structures
— Disk space and memory consumption savings
Sorting
- Offline sorting based on controlled address length
— Random access - sequential access
Distributed 1/0 Loading
- Implementation based on PyTorch’s Sampler
- Round-robin assign local batches to each worker
 Shuffle within each worker’s local batch list

35
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Efficient |/O =» Scalable Training

Weak Scaling on Edison

Before: :
>75% of total 25000+ 4
runtime 9
) % 20000 -
spentinl/O ¢
E 15000 A
8
After: 2 10000 -
O
c *” Peak
|/O reduced F 5000 - —4— Average
to <5% = el
0 .
i 614 158 256 5i2 10124

Number of Nodes

~
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/O Challenges for DL @ Scale

* DL 1/0O workloads are extremely demanding, with both
Data and Metadata Issues:

HPC Simulation Deep Learning

Write-Once / Read-Never Write-Once / Read-Always
Contiguous Large I/O to Random Small I/O to
Sequence of Files Random Files

O(10) of TBs in O(10) of TBs in

O(1000) files O(100,000) files

* Lustre and GPFS file systems typically can’t keep up
— Burst Buffer and node-local NVMe storage have been critical

s> \‘.5\.1 EEEEEEEEEEEEEE Off' ce of
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/O Challenges for DL @ Scale

* Applications are very young and unstable
— DL frameworks only 2-3 years old, may not last another 2-3
— Many load imbalances in compute, communication, and I/O

— Come from a culture of academia & industry, not HPC centers
* Still ”learning to scale”

* Data Management & 1/0 are not “hot topics”
—1/0 is typically last consideration for application developer
—1/0 isn’t “interesting”, just “infrastructure”
* Ingest pipelines for loading scientific data (HDF5,
NetCDF, ...) into DL frameworks are not optimized
— Need multi-threaded support, different tuning, etc.

Office of
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Conclusion

HPC / Simulation

C/C++/ FORTRAN
Application
H5part, EOS- Domain-Specific 1/0
HDFS5, etc. Wrapper
HDF5, netCDF, High-Level I/O
ROOQOT, etc. Middleware
MPI-10, POSIX, Low-Level I/0O
etc. Middleware
Lustre, GPFS, ... Parallel File System
Disk
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Conclusion

HPC / Simulation Deep Learning / Analytics

C/ C++/ FORTRAN Python / Julia/ ...
Application Application

H5part, EOS- Domain-Specific 1/0 Domain-Specific TensorFlow,
HDF5, etc. Wrapper Wrapper PyTorch, Caffe, ...
HDF5, netCDF, High-Level I/O 7?7
ROOQOT, etc. Middleware
MPI-10, POSIX, Low-Level I/O ??7?
etc. Middleware
Lustre, GPFS, ... Parallel File System 277

Disk 277
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Conclusion

We need a new I/0 Middleware Stack for DL workloads!

HPC / Simulation

Deep Learning / Analytics

C / C++/ FORTRAN
Application

Python / Julia / ...
Application

Domain-Specific
Wrapper

Deep Learning 1/O
Middleware

H5part, EOS- Domain-Specific 1/0
HDF5, etc. Wrapper
HDF5, netCDF, High-Level I/O
ROOQOT, etc. Middleware
MPI-10, POSIX, Low-Level I/O
etc. Middleware

Low-Level I/O
Middleware

Lustre, GPFS, ...

Parallel File System

Object Store
(DAOS, Rados, ...)

Disk
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NVRAM

TensorFlow,
PyTorch, Caffe, ...

Adapt HDF5 or
create new?

Need something
like MPI-1O

Read-heavy; high data
and metadata rates

IOPs & Random 1/O
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Questions?
koziol@lbl.gov



mailto:prabhat@lbl.gov

