High Performance Simulations of Quantum
Transport
using Manycore Computing

Yosang Jeong and Hoon Ryu’
(E: elec1020@kisti.re.kr")

Division of National Supercomputing
Korea Institute of Science and Technology Information (KISTI)

/ WD SJMAID{SHIIEIOITIA | vC
National Institute of Supercomputing and Networking

ISTI

The Non-Equilibrium Green'’s Function approach and [
The Recursive Green's Function algorithm

CC
ISTI

The Non-Equilibrium Green’s Function (NEGF)
approach

- Essential to predict quantum transport
- Transmission, Local Density of State, Charge

GRE)=(E—-(H+V)-ZE-H+V))'

- Involves the evaluation of an inverse of The system matrix

the large-scale complex number system matrix Traditional &z\x -

- The most time-consuming part of the NEGF nverse-matrix _1 Iy — algorithm
computation NN

The Recursive Green’s Function (RGF) algorithm \/ Kz\\ \
- Performs the multiplication of sub-matrices SR

in a recursive manner ST
- Evaluates parts of the inverse matrix

- Saves huge computing cost compared to
the traditional way

Our Goal: Accelerating our in-house code QAND
(Quantum simulation tool for Advanced
Nanoscale Device designs) using KNL and GPU

Y. Jeong and H. Ryu, High Performance Simulations of Quantum Transport using Manycore Computing

Processes of RGF computation
The 4-computational steps

- The RGF consists of the 4-computational steps

- The whole computing process of RGF can be divided
into two regions
(the top and bottom half of the system matrix)

- Computation in each region is allocated to a single
MPI process

- The computing load of a single MPI rank is processed
in parallel with OpenMP threads

- Only steps 2 and 4 perform MPI communication

- All steps perform the sub-matrix multiplication

- The number of matrix multiplications in step 3 is much
bigger than in other steps

(Especially off-diagonal computation part)

- Need to focus on step 3

1967

RGF step 1 (1 X-UC per MPI rank)

RGF step 2 (1 X-UC per MPI rank)

Y. Jeong and H. Ryu, High Performance Simulations of Quantum Transport

ercom,
s\g\m "Piyg,

Processes of RGF computation folele
The cost of the step 3 & the size of the nanowire structure ISTI

1967

- The nanowire structure consists of multiple atomic
unitcells

- The X-UCs (the number of unitcells along the X-
direction) is related to the number of diagonal sub-
matrices

- The YZ-UCs (the number of unitcells on the YZ-
plane) is related to the size of each sub-matrix

=
X: transport direction
YZ: cross-sectional direction

e \When X-UC increases ===
2 X-UC 3 X-UC

[N N

1651 = g;Lli (Tt Gﬁl,z‘ﬁ “iv 955) |_

rrrrrrr

2x4 or 4x2
YZ-UC

R| _ _~R . . LR
Giilicj=—Gjiv1 * tivri gi,iL

- As the size of nanowires structure grows,
the number of the sub-matrices to be computed
Increases.
- The computing cost of step 3 increases extremely
- The number of sub-matrices « (X-UC)? in step 3
- The size of sub-matrix « (YZ-UC)2

sasealoul DN-ZA USUM

4x4
YZ-UC

-

@ diag. computation @ off-diag. computation

- Performance optimization for step 3 is essential

Y. Jeong and H. Ryu, High Performance Simulations of Quantum Transport using Manycore Computing 4

ercom
SuP Dy,
& %,

Strategies for performance enhancement ICCC
1. Data-restructuring of complex number matrix ISTI

1967

[AoS-type complex number and matrix] [SoA-type complex number and matrix]

typedef struct complexNum { typedef struct complexMat {
double r; // real num

double r[NxN]; // array of real num
double i; // imaginary num A n n E E double i[NxN]; // array of imaginary num A HHEE
} cNum_t; // complex num 1 } cMat_t; // complex array(matrix) ‘

cNum_t A[NxN]; // A: complex array(matrix) cMat_t A; // A: complex array(matrix)

[AoS-type complex matrix multiplication] [SoA-type complex matrix multiplication]
cNum_t A[NxN], B[NxN], C[NxN] // C=AxB — cMat_t A, B, C; // C=AxB
for(i=0; i<N; i++) { for(i=0; i<N; i++) {
for(k=0; i<N; k++) { for(k=0; i<N; k++) {
for(j=0; Jj<N; j+=4) { for(j=0; j<N; j+=4) { -
C[i][J+0].x += A[i][k].T * B[k][J+0]. Change C.r[i][J+0] += A.r[i][k] * B.r[k][j+0] \
- A[i]{k].1i * B[k][§+0].1; - A.i[i][k] * B.i[k][30];
C[il[j+1].r += A[i][k].r * B[k][]j+1]. the data Structure C.r[i][j+1] += A.r[i][k] * B.r[k][j+1] \
- A[i][k].i * B[k][J*+1].i; - A.ifi)[(k] * B.i[k][J*+1];
Cli](3#2].x += A[Li][k].r * B[k][]+2]. AOS to SOA C.r[i](j*2] += A.r[i][k] * B.r(k][j*2] \
- A[i]{k].1i * B[k][§+2].1; - AGi[i][k] * B.i[k][3*2];
CLi1[3#3].x += A[i](k].x * B[k][J+3]. C.r[i][3+3] += A.r[i](k] * B.r[k][j*3] \
- A[i][k].i * B[k][J*+3].1; - A.ifi)(k] * B.ifk)[j+3];_

C[i][J+0].1 += A[%][k]-llf * B[k][J:LO]-‘ C.i[1][]+0] += A-f[%][k] * B-i[k][J:LO]
+ A[i][k].i * B[k][J+0].r; + A.i[i][k] * B.r[k][J+0];
C[i][J+1].1 += A[J:-][k]{ * B[k][J:Ll]-' C.i[i][]+1] += A-J:’[J:-][k] * B-i[k][le] \
+ A[i][k].1 * B[k][j+1l].r; + A.i[i][k] * B.r[k][j+l];
Cli][J*2].1 += A[%][k]-llf * B[k][J:LZ]-‘ C.i[i][]+2] += A-f[%][k] * B-i[k][J:LZ] \
+ A[i][k].1 * B[k][j+2].r; + A.i[i][k] * B.r[(k][]+2];
C[i][Jj+3].1 += A[J:-][k]{ * B[k][jﬁ]-' C.i[i][]+3] += A-J:’[J:-][k] * B-i[k][jﬁ] \
+ A[i][k].1 * B[k][j+3].r; + A.i[i][k] * B.r[k][]+3];
}r} Y}
- The elements accessed with a stride of 2 - The elements accessed continuously
- It is not desirable for fetchjng multiple data - Excellent data locality for fetching multiple data
due to the poor data locality - The benefit of SIMD can be fully exploited and
- The multiplication process cannot fully exploit the multiplication can be done more efficiently than AoS-
benefit of SIMD operation in KNL type complex matrix multiplication

Y. Jeong and H. Ryu, High Performance Simulations of Quantum Transport using Manycore Computing 5

ercom,
SuP Dy,
& %,

1GC

\ 54

Strategies for performance enhancement
2. Blocked (tiled) matrix multiplication ISTI

1967

- Well known performance optimization techniques
for increasing the cache hit ratio

- How to determine the block size?
= Depend on the system architecture and the problem

- In KNL processor, each core has 32KB L1 cache

- In GV100 GPU, each streaming multiprocessor(SM) has 128KB L1 cache
« Up to 96KB of 128KB can be used as shared memory for user
« The remaining capacity is used as L1 cache for system

Warp Scheduler (32 thread/clk)
ispatch Unit (32 thread/clk)

- In complex number matrix multiplication using SIMD or SIMT,

2VPU ict

the continuous data-access occurs in the 2-matrices (A xB = C) " |
- We set the block size to 32x32 (16KB = 32x32x8x2) ———
> Total 32KB for 2-matrices : - ;

- In KNL, 32KB is perfect size for the L1 cache of KNL

- In GPU, 32x32 is perfect number to generate 1024(=32x32) thread per ==

thread-block to handle a single element per single thread and map a L 21 It 11
total of 2 thread-blocks per SM &ﬂ N ge e

Y. Jeong and H. Ryu, High Performance Simulations of Quantum Transport using Manycore Computing 6

ercom,
SuP Dy,
& %,

Strategies for performance enhancement ICCC
3. Thread-scheduling for thread-utilization efficiency in step 3 ISTI

for (i=Naw-2; i>-1; i--) { // Na.=8
cMat_mul(...); // diag. computation

for (i=Nav-2; i>-1; i--) { // Na.=8
cMat_mul(...); // diag. computation

1
1
1
1
!
// parallelized w/ thread-scheduling |
for (j=(Na-1); 3>i; j--) { |
cMat_mul(...); // off-diag. computation !
i
]
|
1
1
1
1
1

Apply the thread-scheduling
for(j=(Nar-1); j>i; j--) {
cMat_mul(...); // off-diag. computation

» 2560x2560 matrix, 32x32 block, 32 threads

1}
_______________________________ :’ H 32 2560) T T
1 — 2560x2560 matrix I
| M 32 -
- cMat_mul 80 rows of blocks _ oo, ! = 80x80 block matrix - thread cMat mul 80 rows of blocks _100c>/i
e (wig2threads (32threads x3) ~ "1 — 80 rows of blocks should be _ ° . w/i6threads (16threads x5) ~
. cMat_mul 80 rows of blocks 83°/: pa rallelized to 32threads 3 cMat_mul 80 rows of blocks _1000/1
= w/32threads (32threads x3) - ') > 80/32 = 2.5 w/ 16 threads (16threads x 5) 4
. cMat_mul 80 rows of blocks L . thread cMat_mul 80 rows of blocks 3
J= wi32treads (32threads x3) = °>%| ¥ load imbalance occurs % 8 w/8threads _ (8threads x 10) ~ 1007
. cMat_mul 80rowsofblocks .. | . AT . cMat_mul 80 rows of blocks _ ..,
1= w/32threads (32threads x 3) S OU rmain Id €a. ; w/8threads (8threads x 10) 200
"Ik ciae mul sorowsotbocks .| — Perform multiple MatMul simultaneously 1 Mat_mul 80 rows of blocks
i=6 w/32threads (32threads x 3) 838 . . . w/8threads (8threads x 10) 10088
_| N5 o=l CoTINEe - Adjust # of thr. used in a single MatMul n
o cMat_mul 80 rows ofblocks _ g0 o) cMat_mul 80 rows of blocks _ ;4508
.. o) : : ..
The average efficiency: to ~100% as the size of X-UCs increases The average efficiency:
always ~83% ~ The efficiency gain is up to ~17% ~96% In 2 X-UC,

~99.7% in 100 X-UC

Y. Jeong and H. Ryu, High Performance Simulations of Quantum Transport using Manycore Computing 7

ercom,
’\5\)9 D(,b.o

Strategies for performance enhancement IeCC
4. Offload computing with GPU accelerators in step 3 ISTI

® diag. computation

R _ LR R LR
Gii = 9ii * L+ tiivr s Giyqipr - tivni s Gii)

More computation, Less data-transfer
is one of the keys to efficient offload computing

- So, we designed a scheme of offload computing that
can exploit the strength of GPU devices

off-diag. computation
R _ R LR
Gjilig = —Gji+1 * tivai * Gili

€ ——m———m e

!h our scheme, Step 3 IS processed < “Host to Device Device to Host
in the unit of sub-matrix columns Computational Procedure data transfer data transfer

- The number of computations o (X-UCs)? w Host CPU
* same as the number of sub-matrices _i,;.
- The number of data-transfers o« (X-UCs) i GPU Dévice
H to G: 3 per column (4 in the first column) N A S e
G to H: # of sub-matrices in the last column i g_G,(tT,__q_"i_) Y PO B o 7
> More beneficial as the nanostructure 1 el vy T I PIUI I
Becomes longer along the X-direction -l T I Alem

- As the X-UCs increases from 2 to 100, - ~ Computational Procedure
- The number of data-transfers increases from 14(4+3x2 + 4) to 798(4+3x198 + 200)
- The number of computations increases from 9(2+3+4) to 20,999(2+3+...+200)
- The ratio of data-transfer to computation is about 1 : 26 in X-UCs = 100

Y. Jeong and H. Ryu, High Performance Simulations of Quantum Transport using Manycore Computing 8

ercom,
’\5\)9 D"f/'o

Maximize the GPU resource occupancy IPCC
The CUDA Occupancy Calculator ISTI

1967

e e N T

. NVl D |A p rOVi d es th e C U DA Occu pa N Cy Ca |Cu |ato r ptxas info : Compiling entry function '_Z27GINJA_multiplyMatrix_KernelPdS_iS_S_iS_S_' for 'sm_70"

ptxas info : Function properties for _Z27GINJA_multiplyMatrix_KernelPdS_iS_S_iS_S_
0 bytes stack frame, © bytes spill stores, 0 bytes spill loads

- COmp”e With CompUte Capabi“ty and _Xptxas -V ptxas ﬁnfo 8 Used77317’ register§, 32768 bytes smem, 47167b}/tes cmem;e]
- Enter the information into the CUDA Occupancy Calculator T
- The occupancy of GPU resource is reported as a percentage

| CUDA Occupancy Calculator |

Just follow st 1. 2, and 3 below! (or click here for hel,

3.) GPU Occupancy Data is displayed here and in the graphs:

* Max threads per SM: 2,048 e N
* Max shared memory per SM: 96KB

- Set up the computing resources as below: e

« The number of registers per thread: 32 e

Max Registers per Thread
Shared Memory per Multiprocessor (bytes)

« The number of threads per thread-block: 1,024 e

Register allocation granularity
Shared Memory allocation unit size

* The size of shared memory per thread-block: 32KB o S -
* the remaining 64KB per SM is used as L1 cache s T R [T gty s g e

(Warp limit per SM due to per-warp reg count) | 32 | 64 2| .
65536

. |n thls StUdy 1) Selct Compute copablty ey . re';»':;:erml:Z‘;'ﬁ::::ﬁ;:iif::iﬁs;ffi::;s'ng:::n:;mor'y‘:-u;aﬂ‘n
- The compute capability of NVIDIA Quadro GV100: 7.0 =t = =
* Max registers per SM: 65,536

Multiprocessor Warp Occupaney
)

—
0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

Physical Limits for GPU Compute Capability:

Impact of Varying Register Count Per Thread
or Count, 3

> RXRB888 38R

o =

Multiprocessor Warp Occupancy
(# warps)

00z

02
vz
zez
o
857
952

Registers
Shared Memory (Bytes) | 32768 |
4o S o a0 abbreviation for (Sreaming) MAiprocessr

> A total of 2 thread-blocks can be mapped to each SM R MR
All computing resources of the SM are fully utilized. e | D[R] 8

Occupancy = 64/ 64 = 100%

@#warps)

Multiprocessor Warp Occupancy

2z
recol
958

CUDA Occupancy Calculator I
Version: I 90|

= We achieved a 100% occupancy of GPU resources S ' =

Y. Jeong and H. Ryu, High Performance Simulations of Quantum Transport using Manycore Computing 9

Benchmark tests

Test environments and Results of benchmark tests

2560

/NVIDIA Quadro GVA00) (1024 threacs) = 1024000 <3
5120 CUDA cores per
_ HBM2 32GB Y @‘ead-blocjk
rank-0
Intel Xeon Phi 7210 32 threads
J___ 64cores _ _ |——————__T_____X-———=-=
DDR 96GB
MCDRAM 16GB rank-1
32 threads
/NVIDIA Quadro GV1 00\ 1(024 threacD
5120 CUDA cores per
_ HBM2 32GB) Qread—bloc/k the size of target structure:

100x8x16 [100] UCs

- All the 4 techniques contribute significantly to enhancing the

speed of RGF, particularly step 3

- When all the four techniques are applied, the entire

000%20L

Test case
Strategy

MPI & OpenMP

Data-restructuring

Blocked MatMul

Thread-scheduling

Offload computing

X | X |X|X]|O

X | X |XxX|O|O
X |x|O0|0 |0
x| |O0O|l0 |0 |0
O/0O|O0|0|0O

computation can be completed in a about 1 hour

- The percentage of the total wall-time taken by the step 3
decreased from ~95% (case 1) to ~37% (case 5)

- The most-time consuming part becomes the step 1

(~47% of the total wall-time)

Wall-time (hour)

12 14 16 18 20 22 24

10

CC

ISTI

ercom,
SuP I
& Y,

1967

vs1 vs2

2.80x | 1.79x

vs 1

Test case No.

T

[IRGF step 1
[IRGF step 2 .
IRGF step 3
IRGF step 4

speed-up of
the RGF Method

3.27x [1.17x

speed-up of
the RGF step 3

vs 3

vs1 vsd4 |

10357
48.57x|14.83x gm

Y. Jeong and H. Ryu, High Performance Simulations of Quantum Transport using Manycore Computing

&e“perCOmpllbb
Conclusions IOCC
Summary ISTI
1967
g T T T T
. | 1] [_IRGF step 1
In this stuqu, we pro,posed ’gechnlcal strategies to accelerate I =i
the Recursive Green’s Function algorithm EERGF step 3
P IRGF step 4
N[-
speed-up of
- The effective of proposed technical strategies is verified by S
performing benchmark tests in manycore computing resources _| ULODTEE |
T
: . 3t 1
- We observe the wall-time of the entire RGF process can be £
reduced by a factor of ~19.3x eat 1
o
z . vs1 vs2
. = [-2.72x -1.75x vs1 vs3 7
- The details of the techniques are quite universal since the 2 | [3.14x[1.15] |
multiplication of dense complex matrices is one of the most e S| 1T
basic operations ©f]
< [vs1 vs4

Thanks for your attention!

Test case No.

10357
48.57x|14.83x gm

Y. Jeong and H. Ryu, High Performance Simulations of Quantum Transport using Manycore Computing

