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Where to start with oneAPI?

* new exciting programming environment for different hardware architectures

= for data parallel applications — Data Parallel C++ (DPC++)
= expectation: have single code for different platforms (CPUs, GPUs, etc.)

o What to do with existing applications, e.g. written (solely) for CUDA?
o Use Compatibility Tool to migrate a real code (not only vector addition)

e this talk: easyWave
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easyWave

e German Research Center for GeoSciences (GFZ)

e open source tsunami simulation: arrival times and wave heights

o originally written in C++ with classes for OpenMP and CUDA support

¢ memory bound stencil kernels on dynamically growing compute domain
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Heading towards oneAPI

o straightforward migration process, assisted by Compatibility Tool (dpct)

= whole project or selected files as input to dpct

= output is automatically migrated code — still readable + maintainable
= only CUDA-related parts touched

= comments added to mark (un)migrated code/migration issues

e convienient automatic migration

= good starting point for further development
= removes the burden of tedious boilerplate/syntax changes
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Migration Result

e source code

= LOC increase by 5% (4470 vs 4674) due to migrated SYCL kernel launch code
= kernels almost unmodified by Compatibility Tool

e Same code produces valid data on CPU, Intel GPUs, and FPGA.

¢ oneAPI performance evolution on DevCloud Coffee Lake Gen9.5 GT2 iGPU:
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Compute Domain: approx. 2000 x 1400 cells; 10 hours simulation time
* self-made performance issue removed
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Going back to Nvidia GPUs...

... using the migrated DPC++ codel!
¢ almost no adjustments required, except workgroup size
e build with open source Intel LLVM w/ CUDA support (contribution by Codeplay)

o What about performance? Typical application run on Nvidia P100-SXM2-16GB:

CUDA Code 1,705 |
migrated DPC++ Code 1,766 | only 4% slower!
| | |
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Compute Domain: approx. 2000 x 1400 cells; 10 hours simulation time
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. and further to FPGAs

use migrated code again

build for FPGA using dpcpp compiler

run on actual Intel PAC / Stratix 10 SX
= produced correct values

= but computed domain too large — atomics not working as expected
= reduction-like code adjusted to use loop instead of atomics — correct results

What about performance?

initial migrated code 433 | 1.0x

fixed window expansion 166 2.6X
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Summary

o Assisted migration of real world CUDA code to DPC++ feasible.
o Same DPC++ code can target different platforms (almost) without modifications.
e Performance is on par with architecture-specific CUDA code.

Thanks for your attention!
Questions?
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