From CUDA to DPC++ and back to Nvidia GPUs... and FPGAs

A oneAPI case study with the tsunami simulation easyWave

Steffen Christgau, Marius Knaust

Supercomputing Department
Zuse Institute Berlin

IXPUG Annual Conference
October 13, 2020

ZUSE
INSTITUTE
BERLIN

Where to start with oneAPI?

* new exciting programming environment for different hardware architectures

= for data parallel applications — Data Parallel C++ (DPC++)
= expectation: have single code for different platforms (CPUs, GPUs, etc.)

o What to do with existing applications, e.g. written (solely) for CUDA?
o Use Compatibility Tool to migrate a real code (not only vector addition)

e this talk: easyWave

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG'20 177

easyWave

e German Research Center for GeoSciences (GFZ)

e open source tsunami simulation: arrival times and wave heights

o originally written in C++ with classes for OpenMP and CUDA support

¢ memory bound stencil kernels on dynamically growing compute domain

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG'20

2/7

Heading towards oneAPI

o straightforward migration process, assisted by Compatibility Tool (dpct)

= whole project or selected files as input to dpct

= output is automatically migrated code — still readable + maintainable
= only CUDA-related parts touched

= comments added to mark (un)migrated code/migration issues

e convienient automatic migration

= good starting point for further development
= removes the burden of tedious boilerplate/syntax changes

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG'20

3/7

Migration Result

e source code

= LOC increase by 5% (4470 vs 4674) due to migrated SYCL kernel launch code
= kernels almost unmodified by Compatibility Tool

e Same code produces valid data on CPU, Intel GPUs, and FPGA.

¢ oneAPI performance evolution on DevCloud Coffee Lake Gen9.5 GT2 iGPU:

Beta 03 471
Beta 09 38.7|
Beta 09* 25.5]
| | | | |
0 10 20 30 40 50

compute time / s

Compute Domain: approx. 2000 x 1400 cells; 10 hours simulation time
* self-made performance issue removed

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG'20

Going back to Nvidia GPUs...

... using the migrated DPC++ codel!
¢ almost no adjustments required, except workgroup size
e build with open source Intel LLVM w/ CUDA support (contribution by Codeplay)

o What about performance? Typical application run on Nvidia P100-SXM2-16GB:

CUDA Code 1,705 |
migrated DPC++ Code 1,766 | only 4% slower!
| | |
0 500 1,000 1,500

compute time / ms

Compute Domain: approx. 2000 x 1400 cells; 10 hours simulation time

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG'20 5/7

. and further to FPGAs

use migrated code again

build for FPGA using dpcpp compiler

run on actual Intel PAC / Stratix 10 SX
= produced correct values

= but computed domain too large — atomics not working as expected
= reduction-like code adjusted to use loop instead of atomics — correct results

What about performance?

initial migrated code 433 | 1.0x

fixed window expansion 166 2.6X

| | | |
0 100 200 300 400

compute time / s

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG'20

6/7

Summary

o Assisted migration of real world CUDA code to DPC++ feasible.
o Same DPC++ code can target different platforms (almost) without modifications.
e Performance is on par with architecture-specific CUDA code.

Thanks for your attention!
Questions?

Christgau/Knaust (ZIB) From CUDA to DPC++ back to Nvidia and FPGAs IXPUG'20 717

