
Exploring the acceleration of the
Met Office NERC Cloud model
using FPGAs
Nick Brown, EPCC

n.brown@epcc.ed.ac.uk

1

Met Office NERC Cloud (MONC) model

• MONC is a model we developed with the Met Office for
simulating clouds and atmospheric flows
• Written in Fortran 2003 and oriented around the concept of

plug-ins.
• A model core is provided which contains general utility

functionality but all science and parallelism is provided by
independent, separate components

20.06.2019 2

• Runs on much larger domains (billions of grid
points) than previous generations of models
• Unlocks the potential to explore the atmosphere at

scales that were unobtainable before

MONC acceleration on GPUs

• Advection is the most computationally intensive part of
the code at around 40% runtime
• Part of the dynamics group of components

• Stencil based code

20.06.2019 3

• Components in the dynamics group contribute
their calculations to source terms
• Columns are tightly coupled

• However within a timestep each column is independent
from every other column

• Each activity generates source terms

Advection code sketch

do i=1, x_size

do j=1, y_size

do k=2, z_size

su(k, j, i) = tcx * (u(k,j,i-1) * (u(k,j,i) +

u(k,j,i-1)) - u(k,j,i+1) * (u(k,j,i) + u(k,j,i+1)))

su(k, j, i) = su(k, j, i) + tcy * (u(k,j-1,i) *

(v(k,j-1,i) + v(k,j-1,i+1)) - u(k,j+1,i) * (v(k,j,i) + v(k,j,i+1)))

if (k .lt. z_size) then

su(k, j, i) = su(k, j, i) + tzc1(k) * u(k-1,j,i) *

(w(k-1,j,i) + w(k-1,j,i+1)) - tzc2(k) * u(k+1,j,i) * (w(k,j,i) + w(k,j,i+1))

else

su(k, j, i) = su(k, j, i) + tzc1(k) * u(k-1,j,i) * (w(k-1,j,i) + w(k-1,j,i+1))

end if

end do

end do

end do

20.06.2019 4

• In all, 53 double precision floating point operations over advecting u v, and w fields
• 32 double precision floating point multiplications, 21 floating point additions or subtractions

Experiment set-up

20.06.2019 5

663k LUTs, 5520
DSPs, 9.4MB
BRAM

8GB DDR4

PCIe
Gen3*8 8GB DDR4

• AlphaData’s ADM8K5 board plugged into a system with two Intel Sandybridge CPUs (4
cores each)
• Intel CPU system using a Xilinx FPGA

• Following Xilinx’s UltraFast High-Level Productivity Design Methodology
• Write the kernel(s) using HLS which generates the RTL

• Use the block design in Vivado to hook all components together

High level workflow

20.06.2019 6

(1) Copy input data from CPU into
ADM8K5 DRAM via DMA

(2) Execute HLS advection kernels on FPGA

(3) Copy result data from
ADM8K5 DRAM to CPU via DMA

• Two major components here

• HLS kernels

• DMA transfers

High Level Synthesis advection kernel

• Using the High Level
Synthesis tool
synthesise the
kernel and export IP
block

20.06.2019 7

Description Runtime (ms) LUT
usage

DSP48E
usage

BRAM-18k
usage

On Sandybridge CPU 676.4 N/A N/A N/A

Initial port 51498 9743 85 0

Pipeline directive on inner loop 14130 11356 58 64

Local BRAM for column data 3213.2 27598 267 130

Local BRAM batches columns in Y 1513.2 37474 393 453

Extract all variables 1301.6 38393 469 312

Burst mode on port 1097.2 40913 469 324

Re-order X and Y loops 621.3 41151 469 324

Replace memcpy with explicit loops 568.1 40638 466 324

Tune double precision cores
and clock to 310Mhz

514.9 27601 406 324

High Level Synthesis kernel

int pw_advection(double * u, double * su, ..., int size_x, int size_y, ...) {

#pragma HLS INTERFACE m_axi port=u offset=slave

#pragma HLS INTERFACE m_axi port=su offset=slave

#pragma HLS INTERFACE s_axilite port=size_x bundle=CTRL_BUS

#pragma HLS INTERFACE s_axilite port=size_y bundle=CTRL_BUS

#pragma HLS INTERFACE s_axilite port=return bundle=CTRL_BUS

.....

}

20.06.2019 8

• Convert into C and apply
appropriate directives on
interface
• Runtime of 51 seconds 
• Vs 0.676 seconds on CPU!

for (int i=start_x;i<end_x;i++) {

for (int j=start_y;j<end_y;j++) {

for (int k=1;k<size_z;k++) {

#pragma HLS PIPELINE II=1

su(i,j,k)=tcx*(u(i-1,j,k) * (u(i,j,k) + u(i-1,j,k)) - u(i+1,j,k) *

(u(i,j,k) + u(i+1,j,k)));

su(i,j,k)=su(i,j,k) + tcy*(u(i-1,j,k) *(v(i,j-1,k) + v(i+1,j-1,k)) –

u(i,j+1,k) * (v(i,j,k) * v(i+1,j,k)));

………

}

}

}

• Pipeline the inner loop with
initiation interval of one
• Decreases runtime five times

to 14 seconds
• But data ports are the limit

here, maximum two accesses
(as dual ported) any one clock
cycle and-so HLS identifies
possible conflict and limits
pipeline accordingly

High Level Synthesis kernel

20.06.2019 9

double u_vals[MAX_VERTICAL_SIZE], u_xp1_vals[MAX_VERTICAL_SIZE],

u_vals2[MAX_VERTICAL_SIZE],;

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int j=start_y;j<end_y;j++) {

memcpy(u_vals, &u(i,j,0), sizeof(double) * size_z);

memcpy(u_xp1_vals, &u(i+1,j,0), sizeof(double) * size_z);

memcpy(u_vals2, &u(i,j,0), sizeof(double) * size_z);

....

for (unsigned int k=1;k<size_z;k++) {

#pragma HLS PIPELINE II=1

.....

}

}

}

• Use local BRAM to hold data required for
working with a single column
• In all twenty two arrays created
• Copy all data required for a column

from the external data ports, then
process the column

• MAX_VERTICAL_SIZE is required as an
not dynamically size these in HLS

• Either single or dual ported, but more
than 2 accesses can be needed at any
time – hence duplicate these out (e.g.
u_vals and u_vals2)

• Sped up by a further four times (3.2 s), trebling LUT usage, five times usage of DSP slices and over doubling BRAM usage
• But a major limit is must stop and copy before each column, draining the pipeline
• 71 cycles deep with II of 2, with column size of 64 elements then each column the pipeline will run for 199 cycles but

for only 57 of these cycles (28%) is the pipeline full utilised 

High Level Synthesis kernel

20.06.2019 10

double u_vals[MAX_VERTICAL_SIZE * Y_BATCH_SIZE], u_xp1_vals[MAX_VERTICAL_SIZE

* Y_BATCH_SIZE], u_vals2[MAX_VERTICAL_SIZE * Y_BATCH_SIZE],;

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int m=start_y;m<end_y;m+=Y_BATCH_SIZE) {

if (m+Y_BATCH_SIZE > end_y) {

number_in_y=end_y-m;

} else {

number_in_y= Y_BATCH_SIZE;

}

memcpy(u_vals, &u(i,j,0), sizeof(double) * size_z * number_in_y);

memcpy(u_xp1_vals, &u(i+1,j,0), sizeof(double) * size_z * number_in_y);

memcpy(u_vals2, &u(i,j,0), sizeof(double) * size_z * number_in_y);

for (unsigned int j=0;j< number_in_y;j++) {

for (unsigned int k=1;k<size_z;k++) {

#pragma HLS PIPELINE II=1

.....

} } } }

• Feed the pipeline by
Y_BATCH_SIZE of columns now

• HLS also reported was able to
reduce the II down to 1

• Assuming a Y BATCH SIZE of 64
and column size of 64, the
pipeline now runs for 4167
cycles, 97% of which the
pipeline is fully filled

• Halved the runtime, doubled BRAM usage and increased LUT and DSP count
• 1.5 seconds, vs 0.67 seconds on Sandybridge

High Level Synthesis kernel

20.06.2019 11

• Found that HLS does a fairly poor job of identifying which variables are shared and hence can be reused between
calculations.
• So extracted them all out manually into temporary variables and reusing these where possible
• Reduced pipeline depth from 71 to 65 cycles
• Most importantly reduced number of reads on local arrays, reducing number of local arrays by 30%

• 1.3 seconds runtime (0.2 seconds improvement)

su(k, j, i) = tcx * (u(k,j,i-1) * (u(k,j,i) + u(k,j,i-1)) - u(k,j,i+1) * (u(k,j,i) + u(k,j,i+1)))

unsigned int jk_index=(size_z * j) + k;

double u_data=u_vals[jk_index];

double um1_data=um1_vals[jk_index];

double up1_data=up1_vals[jk_index];

double t1=u_data+um1_data;

double t2=u_data+up1_data;

double t7=um1_data * t1;

double t8=up1_data * t2;

double su_x=tcx*(t7 - t8);

High Level Synthesis kernel

20.06.2019 12

• Instead of issueing a single access for each individual data access, retrieve data in bursts
• max_read_burst_length being the amount of data to retrieve in each burst
• num_read_outstanding being the number of bursts that can be in progress/stored at a point in time
• latency is the number of cycles before data is needed that it is fetched (effectively pre-fetching)

• All these bursts are stored in BRAM, slight increase in BRAM usage but runtime down to 1.1 seconds

int pw_advection(double * u, double * su, ..., int size_x, int size_y, ...) {

#pragma HLS INTERFACE m_axi latency=60 port=su offset=direct num_read_outstanding=2 num_write_outstanding=2

max_read_burst_length=256 max_write_burst_length=256

#pragma HLS INTERFACE m_axi latency=60 port=su offset=direct num_read_outstanding=2 num_write_outstanding=2

max_read_burst_length=256 max_write_burst_length=256

.....

}

High Level Synthesis kernel

20.06.2019 13

• Looping through the outer
loop (i) is very expensive as
data must be fetched for the i,
i-1, i+1 location

• But crucially the i-1 and i data
has been fetched for the
previously iteration of the
outer loop
• So we are naively fetching

much more data that’s
needed, actually if we
recast the algorithm then
on each iteration of the
outer loop we only need
to fetch the i+1 iteration

High Level Synthesis kernel

20.06.2019 14

double u_vals[MAX_VERTICAL_SIZE * Y_BATCH_SIZE], u_xp1_vals[MAX_VERTICAL_SIZE

* Y_BATCH_SIZE], u_vals2[MAX_VERTICAL_SIZE * Y_BATCH_SIZE],;

for (unsigned int i=start_x;i<end_x;i++) {

for (unsigned int m=start_y;m<end_y;m+=Y_BATCH_SIZE) {

if (m+Y_BATCH_SIZE > end_y) {

number_in_y=end_y-m;

} else {

number_in_y= Y_BATCH_SIZE;

}

memcpy(u_vals, &u(i,j,0), sizeof(double) * size_z * number_in_y);

memcpy(u_xp1_vals, &u(i+1,j,0), sizeof(double) * size_z * number_in_y);

memcpy(u_vals2, &u(i,j,0), sizeof(double) * size_z * number_in_y);

for (unsigned int j=0;j< number_in_y;j++) {

for (unsigned int k=1;k<size_z;k++) {

#pragma HLS PIPELINE II=1

.....

}

}

}

}

• Looping through the outer
loop (i) is very expensive as
data must be fetched for the i,
i-1, i+1 location

• But crucially the i-1 and i data
has been fetched for the
previously iteration of the
outer loop
• So we are naively fetching

much more data that’s
needed, actually if we
recast the algorithm then
on each iteration of the
outer loop we only need
to fetch the i+1 iteration

High Level Synthesis kernel

20.06.2019 15

for (unsigned int m=start_y;m<end_y;m+= Y_BATCH_SIZE) {

memcpy(up1_vals, &u(start_x,m,0), sizeof(double) * size_z * number_in_y);

....

for (unsigned int i=start_x;i<end_x;i++) {

memcpy(u_vals, up1_vals, sizeof(double) * size_z * number_in_y);

memcpy(up1_vals, &u(i+1,m,0), sizeof(double) * size_z * number_in_y);

....

for (unsigned int j=0;j<number_in_y;j++) {

....

}

}

}

• Swap outer and second loop to
remove two redundant
memory accesses for each i
iteration by pipelining them
• Halves runtime of kernel

to 0.62 seconds – first
time we have beaten the
Sandybridge CPU ☺

for (unsigned int cpy_idx=0;cpy_idx<size_z*number_in_y;cpy_idx++) {

#pragma HLS PIPELINE II=1

u_vals[cpy_idx]=up1_vals[cpy_idx];

}

• Replace memcpy call with explicit loop,
allows us to run these concurrently
• Can pop multiple assignments in

same loop
• Slight runtime decrease to 0.57

seconds and slight LUT usage
decrease

High Level Synthesis kernel

20.06.2019 16

• Tuned all HLS double precision cores
• The major benefit here was the

multiplication
• Using medium DSP reduced DSP

usage by about 1/5th

• Further pipelined the core to 14
stages, provided period of 2.75 ns
meaning we could up the clock
frequency to 310MHz

• This increase of pipeline also
reduced the LUT usage

• Increases pipeline depth from 65 to
72, but latency for a piece of data
has decreased from 2.6e-7 seconds
to 2.3e-7 seconds.

• 0.51 seconds runtime

unsigned int jk_index=(size_z * j) + k;

double u_data=u_vals[jk_index];

double um1_data=um1_vals[jk_index];

double up1_data=up1_vals[jk_index];

#pragma HLS RESOURCE variable=t1 core=DAddSub_fulldsp

#pragma HLS RESOURCE variable=t2 core=DAddSub_fulldsp

#pragma HLS RESOURCE variable=t7 core=DMul_meddsp latency=14

#pragma HLS RESOURCE variable=t8 core=DMul_meddsp latency=14

#pragma HLS RESOURCE variable=su_x core=DMul_meddsp latency=14

double t1=u_data+um1_data;

double t2=u_data+up1_data;

double t7=um1_data * t1;

double t8=up1_data * t2;

double su_x=tcx*(t7 - t8);

High Level Synthesis advection kernel

20.06.2019 17

Description Runtime (ms) LUT
usage

DSP48E
usage

BRAM-18k
usage

On Sandybridge CPU 676.4 N/A N/A N/A

Initial port 51498 9743 85 0

Pipeline directive on inner loop 14130 11356 58 64

Local BRAM for column data 3213.2 27598 267 130

Local BRAM batches columns in Y 1513.2 37474 393 453

Extract all variables 1301.6 38393 469 312

Burst mode on port 1097.2 40913 469 324

Re-order X and Y loops 621.3 41151 469 324

Replace memcpy with explicit loops 568.1 40638 466 324

Tune double precision cores
and clock to 310Mhz

514.9 27601 406 324

The block design

20.06.2019 18

• With 12 HLS kernels we use 78.5% of LUTs, 84.2% of BRAM-18k blocks and 89% of DSP48E slices

Advection kernels in two banks, each bank
connected to a separate 8GB DRAM memory

The block design

20.06.2019 19

PCIe interface,
configured with 4
DMA channels (2 per
8GB SDRAM memory
bank)

DRAM
controllers

Two banks of
8GB SDRAM

Zooming in……..

20.06.2019 20

Go to 310MHz
from reference
250MHz

Separate memory
addresses route to
different kernels

To tie the DRAM together or not…….

• Have two banks of 8GB, so have a choice whether expose all in a single
unified memory space or split up into two banks

• Also have four DMA channels, currently connect two to each bank and run
transfers concurrently
• But these route into a single memory controller, so does this make any difference?

20.06.2019 21

Description DMA transfer time
for 1.6 GB (ms)

Our design (two memory controllers, split apart) 232

One memory controller only 280

Two memory controllers unified memory space 239

One DMA channel per memory controller 242

Performance of FPGA advection kernel

20.06.2019 22

• Four core Sandybridge, 12
core Ivybridge, 18 core
Broadwell and 12
advection kernel FPGA

• Standard status cloud test-
case 67 million grid points
(x=1012, y=1024, z=64)

• Two components to the
overall runtime
• HLS kernel execution time
• DMA transfer time (input

data on, results off)
required each timestep

4
 c

o
re

s

12
cores

18
cores

1
2

 k
e

rn
e

ls

Performance of FPGA advection kernel

20.06.2019 23

• Standard status cloud
test-case 67 million grid
points (x=1012, y=1024,
z=64)

• 4 kernels and beyond, the
dominant cost is that of
data transfer, not
calculation!
• Infact, if we removed the

cost of DMA at 12 kernels
then the execution time
would be less than a third

Scaling of grid (problem) size

20.06.2019 24

• At 268 million grid cells:
• FPGA kernel alone: 14.36

GFLOP/s

• Full FPGA: 4.2 GFLOP/s

• 12-core Broadwell: 17.75
GFLOP/s

• 12.88GB being transferred,
takes 2.2 seconds rate of
5.85 GB/s

Conclusions and further work

• FPGAs are very promising, but the devil is in the detail!
• Algorithm requires significant refactoring to get good performance via HLS & code looks very

different from its sequential counterpart.
• Currently Intel CPU systems outperform our FPGA implementation, but there are plenty of

opportunities for optimisation!

20.06.2019 25

• DMA is clearly a target for optimisation
• Can not stream directly to HLS kernel, but we believe that we could stream into an IP block and

automatically start kernels when the required data has arrived.

• HLS profiling needed
• We should be getting better performance from our IP block than we are. We believe that this is due to

memory bottlenecks, but there isn’t the mechanisms in place to collect hardware counter information
• Hooking this up to an AXI timer at the moment as a basis for this.

• Moving away from FP64
• Single or half precision (less data, more kernels, higher clock rate), fixed point instead of floating point

