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High-End Computing (HEC): PetaFlop to ExaFlop

Expected to have an ExaFlop system in 2020-2021!

100 PFlops in 
2017

1 EFlops in 
2020-2021?

149
PFlops 
in 2018
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Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory
Logical shared memory

Shared Memory Model

SHMEM, DSM
Distributed Memory Model 

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

OpenSHMEM, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• PGAS models and Hybrid MPI+PGAS models are gradually receiving 
importance
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• Scalability for million to billion processors
– Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)
– Scalable job start-up
– Low memory footprint

• Scalable Collective communication
– Offload
– Non-blocking
– Topology-aware

• Balancing intra-node and inter-node communication for next generation nodes (128-1024 cores)
– Multiple end-points per node

• Support for efficient multi-threading
• Integrated Support for Accelerators (GPGPUs and FPGAs)
• Fault-tolerance/resiliency
• QoS support for communication and I/O
• Support for Hybrid MPI+PGAS programming (MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM, 

MPI+UPC++, CAF, …)
• Virtualization 
• Energy-Awareness

Broad Challenges in Designing Runtimes for (MPI+X) at Exascale
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• Extreme Low Memory Footprint
– Memory per core continues to decrease

• D-L-A Framework

– Discover
• Overall network topology (fat-tree, 3D, …), Network topology for processes for a given job
• Node architecture, Health of network and node

– Learn
• Impact on performance and scalability
• Potential for failure

– Adapt
• Internal protocols and algorithms
• Process mapping
• Fault-tolerance solutions 

– Low overhead techniques while delivering performance, scalability and fault-tolerance

Additional Challenges for Designing Exascale Software Libraries 
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Big Data 
(Hadoop, Spark, 

HBase, 
Memcached, 

etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, 

etc.)

HPC 
(MPI, RDMA, 
Lustre, etc.)

Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big 
Data, and Deep Learning!

Increasing Need to Run these 
applications on the Cloud!!
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Understanding the Deep Learning Resurgence

Adopted from: http://www.deeplearningbook.org/contents/intro.html

• Deep Learning (DL) is a sub-set of 
Machine Learning (ML)

– Perhaps, the most revolutionary subset! 

– Feature extraction vs. hand-crafted 
features

• Deep Learning
– A renewed interest and a lot of hype!

– Key success: Deep Neural Networks (DNNs)

– Everything was there since the late 80s 
except the “computability of DNNs” and
“diverse datasets”

AI

Machine 
Learning

Deep 
Learning

Examples:

MLPs, DNNs,

Examples:

Logistic 
Regression

http://www.deeplearningbook.org/contents/intro.html
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu


IXPUG  ‘19 8Network Based Computing Laboratory

Key Phases of Deep Learning

Courtesy: https://devblogs.nvidia.com/

• Training is compute intensive
– Many passes over data

– Can take days to weeks

– Model adjustment is done

• Inference
– Single pass over the data

– Should take seconds

– No model adjustment

• Challenge: How to make “Training” faster?
– Need Parallel and Distributed Training…

https://devblogs.nvidia.com/
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How to Design an Efficient MPI Library 

for Scalable HPC and Deep Learning (DL) 
by exploiting Multi-core Processors?

Broad Challenge:



IXPUG  ‘19 10Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 3,025 organizations in 89 countries

– More than 589,000 (> 0.5 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘18 ranking)

• 3rd, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China

• 5th, 448, 448 cores (Frontera) at TACC

• 8th, 391,680 cores (ABCI) in Japan

• 15th, 570,020 cores (Neurion) in South Korea and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade
Partner in the TACC Frontera System

http://mvapich.cse.ohio-state.edu/
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Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-
point 

Primitives

Collectives 
Algorithms

Energy-

Awareness

Remote 
Memory 
Access

I/O and

File Systems

Fault

Tolerance
Virtualization Active 

Messages
Job Startup

Introspection 
& Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path, Elastic Fabric Adapter)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPOWER, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RC SRD UD DC UMR ODP
SR-
IOV

Multi 
Rail

Transport Mechanisms
Shared 

Memory
CMA IVSHMEM

Modern Features

Optane* NVLink CAPI*

* Upcoming

XPMEM
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MVAPICH2 Software Family 

Requirements Library

MPI with IB, iWARP, Omni-Path, and RoCE MVAPICH2

Advanced MPI Features/Support, OSU INAM, PGAS and MPI+PGAS 
with IB, Omni-Path, and RoCE

MVAPICH2-X

MPI with IB, RoCE & GPU and Support for Deep Learning MVAPICH2-GDR

HPC Cloud with MPI & IB MVAPICH2-Virt

Energy-aware MPI with IB, iWARP and RoCE MVAPICH2-EA

MPI Energy Monitoring Tool OEMT

InfiniBand Network Analysis and Monitoring OSU INAM

Microbenchmarks for Measuring MPI and PGAS Performance OMB
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• High-Performance and Scalable HPC

• CPU-based Deep Learning

• GPU-based Deep Learning

Enabling HPC and Deep Learning through MVAPICH2
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One-way Latency: MPI over IB with MVAPICH2
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Bandwidth: MPI over IB with MVAPICH2
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Startup Performance on TACC Frontera

• MPI_Init takes 3.9 seconds on 57,344 processes on 1,024 nodes
• All numbers reported with 56 processes per node

4.5s
3.9s

New designs available in MVAPICH2-2.3.2
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Impact of Direct Connect (DC) Transport Protocol on Neuron

• Up to 76% benefits over MVAPICH2 for 
Neuron using Direct Connected transport 
protocol at scale

– VERSION 7.6.2 master (f5a1284) 2018-08-15

• Numbers taken on bbpv2.epfl.ch
– Knights Landing nodes with 64 ppn
– ./x86_64/special -mpi -c stop_time=2000 -c is_split=1 

parinit.hoc
– Used “runtime” reported by execution to measure 

performance

• Environment variables used
– MV2_USE_DC=1
– MV2_NUM_DC_TGT=64
– MV2_SMALL_MSG_DC_POOL=96
– MV2_LARGE_MSG_DC_POOL=96
– MV2_USE_RDMA_CM=0
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10%
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39%

Overhead of RC protocol for 
connection establishment and 

communication Available from MVAPICH2-X 2.3rc2 onwards
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Cooperative Rendezvous Protocols

Platform: 2x14 core Broadwell 2680 (2.4 GHz)
Mellanox EDR ConnectX-5 (100 GBps)

Baseline: MVAPICH2X-2.3rc1, Open MPI v3.1.0
Cooperative Rendezvous Protocols for Improved Performance and Overlap
S. Chakraborty, M. Bayatpour, J Hashmi, H. Subramoni, and DK Panda,
SC ‘18 (Best Student Paper Award Finalist)

19%
16% 10%

• Use both sender and receiver CPUs to progress communication concurrently

• Dynamically select rendezvous protocol based on communication primitives and sender/receiver 
availability (load balancing)

• Up to 2x improvement in large message latency and bandwidth

• Up to 19% improvement for Graph500 at 1536 processes
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Advanced Allreduce Collective Designs Using SHArP and Multi-Leaders

• Socket-based design can reduce the communication latency by 23% and 40% on 
Broadwell + IB-EDR nodes

• Support is available since MVAPICH2-X 2.3b
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M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based Multi-
Leader Design, Supercomputing '17. 
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MPI_Allreduce on KNL + Omni-Path (10,240 Processes)
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2.4X

• For MPI_Allreduce latency with 32K bytes, MVAPICH2-OPT can reduce the latency by 2.4X
M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda, Scalable Reduction Collectives with Data Partitioning-based 
Multi-Leader Design, SuperComputing '17. Available since MVAPICH2-X 2.3b
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Optimized CMA-based Collectives for Large Messages
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• Significant improvement over existing implementation for Scatter/Gather with 
1MB messages (up to 4x on KNL, 2x on Broadwell, 14x on OpenPOWER)

• New two-level algorithms for better scalability
• Improved performance for other collectives (Bcast, Allgather, and Alltoall)

~ 2.5x
Better

~ 3.2x
Better

~ 4x
Better

~ 17x
Better

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI 
Collectives for Multi/Many-core Systems, IEEE Cluster ’17, BEST Paper Finalist

Performance of MPI_Gather on KNL nodes (64PPN)

Available since MVAPICH2-X 2.3b
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Shared Address Space (XPMEM)-based Collectives Design
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• “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2

• Offloaded computation/communication to peers ranks in reduction collective operation

• Up to 4X improvement for 4MB Reduce and up to 1.8X improvement for 4M AllReduce

73.2

1.8X
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4X

36.1

37.9

16.8

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction 
Collectives for Multi-/Many-cores, International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.

Available since MVAPICH2-X 2.3rc1
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Benefits of Efficient Asynchronous Progress Design: 
Broadwell + InfiniBand

Up to 33% performance improvement in P3DFFT application with 448 processes
Up to 29% performance improvement in HPL application with 896 processes

Memory Consumption = 69%

P3DFFT High Performance Linpack (HPL)

26%

27% Lower is better Higher is better

A. Ruhela, H. Subramoni, S. Chakraborty, M. Bayatpour, P. Kousha, and D.K. Panda, Efficient Asynchronous Communication 
Progress for MPI without Dedicated Resources, EuroMPI 2018. Enhanced version accepted for PARCO Journal.

Available since MVAPICH2-X 2.3rc1

PPN=28

33%

29%

12%

PPN=28

8%

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
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Application Scalability on Skylake and KNL (Stamepede2)
MiniFE (1300x1300x1300 ~ 910 GB)

Runtime parameters: MV2_SMPI_LENGTH_QUEUE=524288 PSM2_MQ_RNDV_SHM_THRESH=128K PSM2_MQ_RNDV_HFI_THRESH=128K
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At Sender:

At Receiver:
MPI_Recv(r_devbuf, size, …);

inside
MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU 
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• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
• HoomdBlue Version 1.0.5 

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 
MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 
MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)
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Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland
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• 2X improvement on 32 GPUs nodes
• 30% improvement on 96 GPU nodes (8 GPUs/node) 

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data 
Movement Processing on Modern GPU-enabled Systems, IPDPS’16

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content
/tasks/operational/meteoSwiss/

mailto:panda@cse.ohio-state.edu
http://www2.cosmo-model.org/content
mailto:panda@cse.ohio-state.edu
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• Released on 08/16/2019

• Major Features and Enhancements

– Based on MVAPICH2-2.3.2

– Enhanced tuning for point-to-point and collective operations

– Targeted for Azure HB & HC virtual machine instances

– Flexibility for 'one-click' deployment
– Tested with Azure HB & HC VM instances

MVAPICH2-Azure 2.3.2
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• Released on 08/12/2019

• Major Features and Enhancements

– Based on MVAPICH2-X 2.3

– New design based on Amazon EFA adapter's Scalable Reliable Datagram (SRD) transport protocol

– Support for XPMEM based intra-node communication for point-to-point and collectives

– Enhanced tuning for point-to-point and collective operations

– Targeted for AWS instances with Amazon Linux 2 AMI and EFA support

– Tested with c5n.18xlarge instance

MVAPICH2-X-AWS 2.3
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• High-Performance and Scalable HPC

• CPU-based Deep Learning

• GPU-based Deep Learning

Enabling HPC and Deep Learning through MVAPICH2
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• Deep Learning frameworks are a different game 
altogether

– Unusually large message sizes (order of megabytes)

– Most communication based on GPU buffers

• Existing State-of-the-art
– cuDNN, cuBLAS, NCCL --> scale-up performance

– NCCL2, CUDA-Aware MPI -->  scale-out performance
• For small and medium message sizes only!

• Can we optimize the MPI runtime (MVAPICH2-X and 
MVAPICH2-GDR) for DL frameworks?

– Efficient Overlap of Computation and Communication

– Efficient Large-Message Communication (Reductions)

• What application co-designs are needed to exploit 
communication-runtime co-designs?

Deep Learning: New Challenges for MPI Runtimes
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Scale-out Performance
A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU 
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)

cuDNN

gRPC

Hadoop

MPI

MKL-DNN

Desired
NCCL2
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Holistic Evaluation is Important!!

• My framework is faster than 
your framework!

• This needs to be understood 
in a holistic way.

• Performance depends on 
the entire execution 
environment (the full stack)

• Isolated view of 
performance is not helpful

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training on 
Modern Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.

MKL/
MKL-DNN
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• Use Message Passing Interface (MPI) for single-node and multi-node training
– Multi-process (MP) better than single-process (SP) approach

• Use Intel-optimized TensorFlow (MKL/MKL-DNN primitives)
– Single-process (SP) training  -- still under-optimized to fully utilize all CPU cores 

• Overall performance depends on 
– Number of cores 

– Process per node (PPN) configuration

– Hyper-threading (enabled/disabled)

– DNN specifications like inherent parallelism between layers (inter-op parallelism)

– Type of DNN (ResNet vs. Inception)

Three Key Insights
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• TensorFlow is the most popular 
DL framework

• gRPC is the official distributed 
training runtime

– Many problems for HPC use-
cases

• Community efforts - Baidu and 
Uber’s Horovod have added MPI 
support to TF across nodes

• Need to understand several 
options currently available 

Distributed Training using TensorFlow (TF)

A. Awan, J. Bedorf, C. Chu, H. Subramoni and D. K. Panda, “Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, 
and Performance Evaluation, CCGrid ‘19. https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112
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Single-Process (SP) vs. Multi-Process (MP) on one node

• Two different models on TACC Stampede (Intel Xeon Skylake – 48 cores)

• Key idea: MP is better than SP for all cases!
– PPN and Hyper-threading needs to be tuned

A. Jain,  A. Awan, Q. Anthony, H. Subramoni, and D. K. Panda, Performance Characterization of DNN Training using TensorFlow and 
PyTorch on Modern Clusters, Cluster ‘19.



IXPUG  ‘19 38Network Based Computing Laboratory

Multi-node Performance for TensorFlow
• Use tuned configuration (based on SP and MP) for 

multi-node 
– PPN, batch size, and other parameters need to be 

tuned for best performance



Using MVAPICH2, we 
achieved 125x speedup 
(over single-node) on 128 
nodes for ResNet-152!

A. Jain,  A. Awan, Q. Anthony, H. Subramoni, and D. K. Panda, Performance Characterization of DNN Training using TensorFlow and 
PyTorch on Modern Clusters, Cluster ‘19.
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Multi-node Performance for PyTorch
• Early results with PyTorch (using tuned configuration)

– Good scaling (106X speedup on 128 nodes) 

– Overall -- Slower than TensorFlow

A. Jain,  A. Awan, Q. Anthony, H. Subramoni, and D. K. Panda, Performance Characterization of DNN Training using TensorFlow and 
PyTorch on Modern Clusters, Cluster ‘19.
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Deep Learning on TACC Frontera 
• TensorFlow, PyTorch, and MXNet are widely used Deep Learning Frameworks

• Optimized by Intel using Math Kernel Library for DNN (MKL-DNN) for Intel 
processors

• Single Node performance can be improved by running Multiple MPI processes 

Impact of Batch Size on Performance for ResNet-50 Performance Improvement using Multiple MPI processes

A. Jain et al., Scaling Deep Learning Frameworks on Frontera using MVAPICH2 MPI, under review
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Deep Learning on TACC Frontera 

• Observed 260K images per sec for ResNet-50 on 2,048 Nodes

• Scaled MVAPICH2-X on 2,048 nodes on Frontera for Distributed Training using 
TensorFlow

• ResNet-50 can be trained in 7 minutes on 2048 nodes (114,688 cores)

A. Jain et al., Scaling Deep Learning Frameworks on Frontera using MVAPICH2 MPI, under review
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• High-Performance and Scalable HPC

• CPU-based Deep Learning

• GPU-based Deep Learning

Enabling HPC and Deep Learning through MVAPICH2
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MVAPICH2-GDR vs. NCCL2 – Allreduce Operation
• Optimized designs in MVAPICH2-GDR 2.3 offer better/comparable performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs
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MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (DGX-2)
• Optimized designs in MVAPICH2-GDR offer better/comparable performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)
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MVAPICH2-GDR: Enhanced MPI_Allreduce at Scale
• Optimized designs in MVAPICH2-GDR offer better performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) up to 1,536 GPUs
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Distributed Training with TensorFlow and MVAPICH2-GDR
• ResNet-50 Training using 

TensorFlow benchmark on 
SUMMIT -- 1536 Volta 
GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3.6 seconds

• Total Time (90 epochs)        
= 3.6 x 90 = 332 seconds = 
5.5 minutes!
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Platform: The Summit Supercomputer (#1 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 9.2

*We observed errors for NCCL2 beyond 96 GPUs 

MVAPICH2-GDR reaching ~0.35 million 
images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images
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• Support for Scalable HPC and Deep Learning is getting important

• Requires high-performance middleware designs while exploiting modern 
interconnects and multi-core processors

• Provided an overview of MVAPICH2 MPI library to achieve scalable HPC 
and Deep Learning  

• Will continue to enable the HPC and DL community to achieve scalability 
and high-performance for their workloads

Conclusions
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• Supported through X-ScaleSolutions (http://x-scalesolutions.com)
• Benefits:

– Help and guidance with installation of the library

– Platform-specific optimizations and tuning

– Timely support for operational issues encountered with the library

– Web portal interface to submit issues and tracking their progress

– Advanced debugging techniques

– Application-specific optimizations and tuning

– Obtaining guidelines on best practices

– Periodic information on major fixes and updates

– Information on major releases

– Help with upgrading to the latest release

– Flexible Service Level Agreements 
• Support provided to Lawrence Livermore National Laboratory (LLNL) for the last two years

Commercial Support for MVAPICH2, HiBD, and HiDL Libraries

http://x-scalesolutions.com/
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• Has joined the OpenPOWER Consortium as a silver ISV member
• Provides flexibility:

– To have MVAPICH2, HiDL and HiBD libraries getting integrated into the 
OpenPOWER software stack

– A part of the OpenPOWER ecosystem

– Can participate with different vendors for bidding, installation and deployment 
process

• Introduced two new integrated products with support for OpenPOWER systems 
(Presented at the OpenPOWER North America Summit) 

– X-ScaleHPC

– X-ScaleAI

– Send an e-mail to contactus@x-scalesolutions.com for free trial!!

Silver ISV Member for the OpenPOWER Consortium + 
Products

mailto:contactus@x-scalesolutions.com


IXPUG  ‘19 50Network Based Computing Laboratory

7th Annual MVAPICH User Group (MUG) Meeting

• August 19-21, 2019; Columbus, Ohio, USA

• Keynote Speakers

– Dan Stanzione, Texas Advanced Computing Center (TACC) 

– Robert Harrison, Director of the Institute of Advanced 
Computational Science (IACS) and Brookhaven Computational 
Science Center (CSC)

• Tutorials

• ARM

• IBM

• Mellanox

• OSU/MVAPICH2

Slides and Videos of the talks are available from

http://mug.mvapich.cse.ohio-state.edu

• Invited Speakers 

– Gregory Blum Becker, Lawrence Livermore National Laboratory

– Nicholas Brown, EPCC, The University of Edinburg (United Kingdom)

– Gene Cooperman, Northeastern University

– Hyon-Wook Jin, Konkuk University (South Korea)

– Jithin Jose, Microsoft Azure

– Minsik Kim, KISTI Supercomputing Center (South Korea)

– Pramod Kumbhar, Blue Brain Project, EPFL (Switzerland)

– Naoya Maruyama, Lawrence Livermore National Laboratory

– Heechang Na, Ohio Supercomputer Center

– Vikram Saletore, Intel

– Jeffrey Salmond, University of Cambridge (United Kingdom)

– Gilad Shainer, Mellanox

– Sameer Shende, Paratools and University of Oregon

– Sayantan Sur, Intel

– Shinichiro Takizawa, RWBC-OIL, AIST (Japan)

– Mahidhar Tatineni, San Diego Supercomputing Center (SDSC)

– Karen Tomko, Ohio Supercomputer Center

http://mug.mvapich.cse.ohio-state.edu/
http://mug.mvapich.cse.ohio-state.edu/
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• Looking for Bright and Enthusiastic Personnel to join as 

– PhD Students

– Post-Doctoral Researchers

– MPI Programmer/Software Engineer 

– Hadoop/Big Data Programmer/Software Engineer

– Deep Learning and Cloud Programmer/Software Engineer

• If interested, please send an e-mail to panda@cse.ohio-state.edu

Multiple Positions Available in My Group
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

panda@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
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