
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

Evaluation of oneAPI for
FPGAs

SAND2021-7264 C

Presented by: Nicholas Mi l ler

Nicholas Miller, Jeanine Cook, and Clayton Hughes

Introduction

Motivation

• Application-specific accelerators have shown promising results in both
power and performance
• Have historically faced challenges for HPC
• Development environment not amenable to agile application and hardware co-design
• System integration and deployment complexity

• Chip specialization and investment in high-level synthesis tools have
brought ASA technology much closer to practical reality

3

Evaluate Intel’s oneAPI tools for FPGA
Programmability and Performance

Introduction to oneAPI

• Programming framework that provides
a single interface for multiple targets
• DPC++ which builds upon SYCL
• Can target GPUs, CPUs, and FPGAs

• Includes libraries to accelerate certain
application domains

• Open specification

4

https://software.intel.com/content/www/us/en/develop/tools/oneapi/commerci
al-base.html#gs.3lc6t2

miniAMR

• Adaptive mesh refinement proxy
application

• Simulates an object moving through a
mesh and adaptively refines the mesh
in order to save on computation

• Computation is a simple 7-point stencil
which takes an average

• Only the computation-heavy stencil
calculation is moved to the FPGA
• Mesh refinement and communication

sections of the program stay the same

5

Sandia National Laboratories, https://www.osti.gov/servlets/purl/1258271

Base Host Code6

Create temporary arrays to
hold data going to and
coming from the FPGA

Buffers only accept 1D
arrays so flatten the 3D array

Create the SYCL buffer

Call the FPGA kernel

Expand the returned data
and store it in the host
arrays

Base FPGA Kernel Code7

Create accessors to get data from
the host

Create local memory to store
variables within the programmable
fabric

Load data from FPGA SDRAM (global
memory) into programmable logic
BRAM (local memory)

Compute a 7-point stencil using the
local memory

Store data from local memory to
global memory

Optimizations

Combining Memory Transactions

• The optimization that provided the largest performance boost was to
combine all the variable computations in a block into a single
communication and computation step

• This reduced the number of calls to the SYCL runtime by 40x

9

Submit
kernel to

queue

Transfer
variable to

FPGA

Compute
stencil over

variable

Return data
to host 40x

Submit
kernel to

queue

Transfer 40
variables to

FPGA

Compute
stencil over
40 variables

Return data
to host 1x

Host code execution from base code

Host code execution after combining memory transactions

Host Changes - Combining Memory Transactions10

• Packed all variables
into a single array
sent to the FPGA

Kernel Changes - Combining Memory Transactions

• Compute on all 40
variables in each kernel
call
• First bring all 40

variables into local
memory

• Then compute the
stencil of on all 40
variables

11

Reduce Local Memory Usage

• Instead of always storing all 40 variables in the kernel, only store a
single variable which is being computed upon

• Reduces the overhead of the local memory usage by 40x without
noticeable slowdown

12

Host

Global
Memory

Local MemoryComputation
Pipeline

Global
Memory

40x

Global
Memory

Local
Memory

Computation
Pipeline

Host Host

Data flow in combined memory transactions code Data flow to reduce local memory usage

FPGA Changes - Reduce Local Memory

• Compute the stencil
directly after bringing a
single variable into local
memory

• Removed the outer
loop previously at line
20

13

Flattening Arrays

• Converted all multi-dimensional arrays in the host code to 1d, which
eliminated the need to convert for the buffer creation

• Reduces host side pre- and post- processing needed on every kernel
invocation

14

Create
temporary 1D

array

Copy host data
from 4D array
into temporary

array

Create buffer
using memory

address of
temporary

array

Run kernel

Copy data from
temporary

array back into
host 4D array

Create buffer using memory
address of host array Run kernel

Host code execution from combined memory transactions code

Host code execution after flattening arrays

Host Changes - Flattening Arrays

• Completely removes the need for packing the host data into arrays

• Uses the original host side arrays memory locations for buffer creation
so the data is copied from and to the FPGA more efficiently

• Now only the following steps are needed:
1. Create the buffer using the host memory address
2. Enqueue the kernel to be run on the FPGA

• No modifications required in kernel code

15

Buffering SYCL Runtime Calls

• Calling the SYCL runtime for the kernel queues and submits it while the
FPGA works on the stencil calculation

• This only works if the execution of the kernel is long enough to hide the
SYCL runtime overheads

16

• Blue: Queued for
submission

• Yellow: Submitted
and waiting to run

• Orange: Executing

Host Changes - Buffering SYCL Runtime Calls

• Create a vector that stores the buffers of each kernel invocation

• All buffer destructors are called when the function exits, and the vector
destructor is called

• Data is transferred back as needed – controlled by the SYCL runtime
until destructor is called

• If only using a single block there is no functional change as we are
queuing kernel invocations over blocks

17

Unrolling Computation Pipeline Loop

• Unroll the outermost loop to create multiple concurrent pipelines
• Each variable computed independently

18

Global Memory

Loop Control Logic

Computation Pipeline

Local Memory

Global Memory

Loop Control Logic

Computation
Pipeline

Local Memory

Computation
Pipeline

Local Memory

Computation
Pipeline

Local Memory

Computation
Pipeline

Local Memory

Simplified FPGA architecture of reduced
local memory optimization code

Simplified FPGA architecture of unrolled
outermost computation loop

FPGA Changes - Unrolling Computation Pipeline Loop

• Compiler hint to inform
unroll depth

19

Results

Experimental Setup21

• Run on the Intel Devcloud system

• Submitted to node by OpenPBS scheduler

• Increased number of blocks in a run to compare for the buffering tests

CPU 2 x Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz

FPGA Family Arria 10

FPGA Device 10AX115S2F45I2SGES

oneAPI Version Beta08

System Memory 196 GB

Base Parameters No Parameters

Increased Blocks Parameters --num_refine 4 --max_blocks 9000 --num_objects 1 --object 2 0 -1.71 -1.71 -1.71 0.04 0.04 0.04
1.7 1.7 1.7 0.0 0.0 0.0 --num_tsteps 25

Performance22

36.85

33.36

13.08

13.04

3.10

2.48

2.47

2.51

0 5 10 15 20 25 30 35 40

Combined Memory Transactions

Reduced Local Memory

Flattened Arrays

Buffered-Base Parameters

Buffered-Multiple Blocks

Unrolled 2

Unrolled 4

Unrolled 8

Slowdown Compared to Processor

Utilization23

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Base

Combined Memory Transactions

Reduced Local Memory

Flattened Arrays

Buffered

Unrolled 2

Unrolled 4

Unrolled 8

Device Resource Usage

DSPs MLABs RAMs FFs ALUTs

Summary

Manufacturing and materials advances have brought application-specific
accelerators closer to reality

Evaluated the miniAMR proxy application using Intel’s oneAPI tools to
determine maturity and viability of HLS for ASA development

Showed that application was easy to port but difficult to optimize

24

https://www.shutterstock.com/g/tashatuvango

Questions?

