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Introduction



Motivation

• Application-specific accelerators have shown promising results in both 
power and performance
• Have historically faced challenges for HPC
• Development environment not amenable to agile application and hardware co-design
• System integration and deployment complexity

• Chip specialization and investment in high-level synthesis tools have 
brought ASA technology much closer to practical reality
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Evaluate Intel’s oneAPI tools for FPGA 
Programmability and Performance



Introduction to oneAPI

• Programming framework that provides 
a single interface for multiple targets
• DPC++ which builds upon  SYCL
• Can target GPUs, CPUs, and FPGAs

• Includes libraries to accelerate certain 
application domains

• Open specification
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https://software.intel.com/content/www/us/en/develop/tools/oneapi/commerci
al-base.html#gs.3lc6t2



miniAMR

• Adaptive mesh refinement proxy 
application 

• Simulates an object moving through a 
mesh and adaptively refines the mesh 
in order to save on computation

• Computation is a simple 7-point stencil 
which takes an average

• Only the computation-heavy stencil 
calculation is moved to the FPGA
• Mesh refinement and communication 

sections of the program stay the same
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Sandia National Laboratories, https://www.osti.gov/servlets/purl/1258271



Base Host Code6

Create temporary arrays to 
hold data going to and 
coming from the FPGA

Buffers only accept 1D 
arrays so flatten the 3D array

Create the SYCL buffer

Call the FPGA kernel

Expand the returned data 
and store it in the host 
arrays



Base FPGA Kernel Code7

Create accessors to get data from 
the host

Create local memory to store 
variables within the programmable 
fabric

Load data from FPGA SDRAM (global 
memory) into programmable logic 
BRAM (local memory)

Compute a 7-point stencil using the 
local memory

Store data from local memory to 
global memory



Optimizations



Combining Memory Transactions

• The optimization that provided the largest performance boost was to 
combine all the variable computations in a block into a single 
communication and computation step

• This reduced the number of calls to the SYCL runtime by 40x
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Host Changes - Combining Memory Transactions10

• Packed all variables 
into a single array 
sent to the FPGA



Kernel Changes - Combining Memory Transactions

• Compute on all 40 
variables in each kernel 
call
• First bring all 40 

variables into local 
memory

• Then compute the 
stencil of on all 40 
variables
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Reduce Local Memory Usage

• Instead of always storing all 40 variables in the kernel, only store a 
single variable which is being computed upon

• Reduces the overhead of the local memory usage by 40x without 
noticeable slowdown
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FPGA Changes - Reduce Local Memory

• Compute the stencil 
directly after bringing a 
single variable into local 
memory

• Removed the outer 
loop previously at line 
20
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Flattening Arrays

• Converted all multi-dimensional arrays in the host code to 1d, which 
eliminated the need to convert for the buffer creation

• Reduces host side pre- and post- processing needed on every kernel 
invocation
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Host Changes - Flattening Arrays

• Completely removes the need for packing the host data into arrays

• Uses the original host side arrays memory locations for buffer creation 
so the data is copied from and to the FPGA more efficiently

• Now only the following steps are needed:
1. Create the buffer using the host memory address
2. Enqueue the kernel to be run on the FPGA

• No modifications required in kernel code
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Buffering SYCL Runtime Calls

• Calling the SYCL runtime for the kernel queues and submits it while the 
FPGA works on the stencil calculation

• This only works if the execution of the kernel is long enough to hide the 
SYCL runtime overheads
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• Blue: Queued for 
submission 

• Yellow: Submitted 
and waiting to run 

• Orange: Executing



Host Changes - Buffering SYCL Runtime Calls

• Create a vector that stores the buffers of each kernel invocation

• All buffer destructors are called when the function exits, and the vector 
destructor is called

• Data is transferred back as needed – controlled by the SYCL runtime 
until destructor is called

• If only using a single block there is no functional change as we are 
queuing kernel invocations over blocks
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Unrolling Computation Pipeline Loop

• Unroll the outermost loop to create multiple concurrent pipelines
• Each variable computed independently
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FPGA Changes - Unrolling Computation Pipeline Loop

• Compiler hint to inform 
unroll depth
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Results



Experimental Setup21

• Run on the Intel Devcloud system

• Submitted to node by OpenPBS scheduler

• Increased number of blocks in a run to compare for the buffering tests

CPU 2 x Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz

FPGA Family Arria 10

FPGA Device 10AX115S2F45I2SGES

oneAPI Version Beta08

System Memory 196 GB

Base Parameters No Parameters

Increased Blocks Parameters --num_refine 4 --max_blocks 9000 --num_objects 1 --object 2 0 -1.71 -1.71 -1.71 0.04 0.04 0.04 
1.7 1.7 1.7 0.0 0.0 0.0 --num_tsteps 25



Performance22
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Utilization23
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Summary

Manufacturing and materials advances have brought application-specific 
accelerators closer to reality

Evaluated the miniAMR proxy application using Intel’s oneAPI tools to 
determine maturity and viability of HLS for ASA development

Showed that application was easy to port but difficult to optimize
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https://www.shutterstock.com/g/tashatuvango



Questions?


