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• Use Intel® Optane™ SSD DC P4800X 
transparently as memory 
 

• Grow beyond system DRAM capacity, or 

replace high-capacity DIMMs for lower-

cost alternative, with similar performance 
 

• Leverage storage-class memory today! 
• No change to software stack: unmodified Linux* OS, 

applications, and programming  

• No change to hardware: runs bare-metal, loaded 

before OS from BIOS or UEFI 
 

• Aggregated single volatile memory pool 
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Introducing Intel® Memory Drive Technology 

OLD NEW 

*Other names and brands may be claimed as the property of others 
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How Intel® Memory Drive Technology works 

• IMDT operates on hypervisor level 

• Requires CPU with virtualization support 

• Supports any Linux distribution 
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Application 

DRAM CPU etc. 

Operating system 

Application 

Operating system  
IMDT 

DRAM CPU etc. 
Optane 
drives 

• Store unused memory pages to Optane 
drives and load to DRAM when needed 

• Analyzes memory access patterns to 
prefetch data on local to CPU DRAM slot 



When to use and when not to use Intel® 
Memory Drive Technology 

  Your application is designed to 
use very large amount of memory 

• Benefits from the large memory pool 

• Virtually no performance decrease 
on benchmarks with high arithmetic 
intensity 

 Your application does not handle 
memory-locality/NUMA well 

• Benefits from the intelligent control 
of NUMA memory access 

 Your application is bound by the 
memory bandwidth 

• The memory-bandwidth of Xeon is 
>50GB/s; Optane is 2GB/s per SSD 

• Up to ~50% efficiency is expected, 
not more 
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What is important for Intel® Memory Drive 
Technology? 

• Predictable accesses 
– If there is a pattern to the memory access, be it simple such as “sequential”, mid-

complex like “fetch 1K every 72K”, or entirely complex like “if going to an ID field 
in a record in a table, fetch the whole record” 

• High arithmetic intensity (FLOPs/byte ratio) 
– For every fetch from memory (in average) many compute cycles done 

• High concurrency 
– Using at least 50% of the cores in a server platform concurrently, preferably 

more and even over-subscribed 
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IMDT BENCHMARKS 
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Hardware description 

• Dual-socket Intel® Xeon® E5-2699 v4 (2x22 cores, 2.2 GHz) 
– First configuration (MDT): 

• 256 GB ECC DDR4 
• 4x320 GB Intel® Optane™ SSD (≈10 GB/s aggregated bandwidth) 

– Second configuration (lot of DRAM): 
• 1536 GB ECC DDR4 

• Dual-socket Intel Xeon Gold 6154 (2x18 cores, 3.0 GHz) 
– First configuration: 

• 192 GB ECC DDR4 
• 8x Intel® Optane™ SSD 

– Second configuration 
• 1536 GB ECC DDR4 

– Only few benchmarks have been run yet 
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/dev/null 

Polynomial benchmark 

• Sequential-memory access benchmark 

– Compute polynomial values over a large array of input data 

• Types of memory access patterns: 

– Read only (RO) 

– Read and write to another array (RW) 

• Adjustable degree of polynomials 

• Polynomials are computed using Horner method: 

𝑃 𝑥 = … (𝑎𝑛𝑥 + 𝑎𝑛−1 𝑥 + 𝑎𝑛−2 …)𝑥 + 𝑎0 

𝑁𝐹𝐿𝑂𝑃 = 2 ⋅ 𝑑𝑒𝑔𝑟𝑒𝑒 ⋅ 𝑁𝑑𝑎𝑡𝑎 

𝐹𝐿𝑂𝑃𝑠

𝑏𝑦𝑡𝑒
=

2 ⋅ 𝑑𝑒𝑔𝑟𝑒𝑒

𝑠𝑖𝑧𝑒𝑜𝑓(𝑟𝑒𝑎𝑙_𝑡)
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Polynomial benchmark (Read Only) 
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BDW, 44 threads, 4 Optane 

Efficiency: Intel® Memory Drive technology vs RAM 

% RAM – workload size, FLOPs/byte – workload complexity, color – efficiency  
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Polynomial benchmark (Read Only) 
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BDW, 44 threads, 4 Optane 

Efficiency: Intel® Memory Drive technology vs RAM 

% RAM – workload size, FLOPs/byte – workload complexity, color – efficiency  

100% 200% 300%

4

8

16

32

64

128

256

512

1024

2048

F
L

O
P

s
/b

y
te

% RAM

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

E
ff

ic
ie

n
c
y

SKX, 36 threads, 8 Optane 
SKX results are 

preliminary –  not all 
test cases have been 

sampled yet 

≈2x improvement 

2/28/2019 



Polynomial benchmark (Read&Write) 
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% RAM – workload size, FLOPs/byte – workload complexity, color – efficiency  

Efficiency: Intel® Memory Drive technology vs RAM 
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Polynomial benchmark summary 

– If data size is larger than DRAM: 

• Arithmetic intensity (AI) requirements to get efficiency >80% depends on the 
workload, number of drives and CPU: 
– RO: 128-256 FLOPs/byte 

– RW: 256-512 FLOPs/byte 

• AI should be measured on DRAM-LLC level 

– If data fits in DRAM: 

• No performance degradation 

• MDT can be faster for NUMA non-aware applications 

– Arithmetic intensity requirements decrease linearly with the number of Intel 
Optane drives 
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LU decomposition 

– Factorization of matrix 𝐴 into product of 
lower triangular (𝐿) and upper triangular 
(𝑈) matrices 

– A commonly used kernel in many 
scientific codes: 
• Solving systems of linear equations 

• Matrix inversion 

• Computing determinants 

– A kernel in LINPACK benchmark 

IXPUG Working Group 

A = L U × 

= × 
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LU decomposition 

• Performance results 

– DRAM maximum performance: 
850 GFLOPs/s 

– Intel® Memory Drive Technology 
maximum performance: 1,250 
GFLOPs/s 

– A huge performance degradation 
beyond ≈150% RAM utilization 

 

• Can we improve the results? 
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LU decomposition 

– Memory access pattern is by column 
blocks 

– Nearby elements are scattered 
throughout different memory pages 
• 4KB page = 512 double precision numbers 

• A huge data traffic for large matrices 
(2 ⋅ 105and above) 

– There are tiled LU algorithms (e.q. 
PLASMA) 

IXPUG Working Group 

LU memory access pattern 
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LU decomposition 
– Memory access pattern is by column 

blocks 

– Nearby elements are scattered 
throughout different memory pages 
• 4KB page = 512 double precision numbers 

• A huge data traffic for large matrices 
(2 ⋅ 105and above) 

– There are tiled LU algorithms (e.q. 
PLASMA) 

– We used a simple implementation from 
hetero-streams code base 

– Little performance degradation beyond 
100% RAM usage 
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86% 33% 
efficiency 

𝑁 = 280000, 230% RAM 
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Lessons learned from benchmarks with Intel® 
Memory Drive Technology 

 – Data moving between Intel® Optane™ SSDs and RAM is very expensive (10-20 
GB/s max): 

• Reuse data as much as possible 
– Arithmetic intensity on DRAM↔MDT level should be ≥200-500 FLOPs/byte 

depending on the number of Optane 

• Redesign data structures in you program for locality 

• Work with large data chunks 

• Think about DRAM as a large L4 cache for MDT 

– Same optimization principles as on NUMA architectures 

– Data-oriented programming is a must 

• It benefits another modern hardware as well 
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Scientific applications 

• Computational chemistry: 

– LAMMPS* (molecular dynamics) 

– GAMESS (two-electron integral 
kernel) 

• Astrophysics: 

– AstroPhi* (hyperbolic partial 
differential equation solver) 

• Sparse linear algebra problems: 

– Intel® Math Kernel Library 
PARDISO 

• Quantum computing simulator: 

– Intel-QS, formerly known as 
qHipster 
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Scientific applications 

• Results: 

– Efficiency is slightly higher than 
100% within DRAM 

– Efficiency beyond DRAM varies 
from 50% up to >100% 

– LAMMPS, AstroPhi and Intel-QS 
are memory bound apps, 
efficiency tends to 50% when 
memory growth 
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Conclusions 

– Efficiency of optimized applications is close to 100% with Intel® 
Memory Drive Technology 

– Efficiency of non-optimized applications can vary from 20% to more 
than 100%. Typical efficiency of bandwidth-bound applications is up 
to 50%. 

– Optimal performance is expected on next generation of Intel® 
Optane™ SSDs 
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Future work 

– Scaling of IMDT performance vs number of Optane SSDs 

– Comparing Intel Optane-powered fat-memory node with distributed 
memory on scientific applications 

– Testing Intel® Optane™ DC Persistent memory 
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Our paper at SC’18 workshop 
V. Mironov, A. Kudryavtsev, Y. Alexeev, A. Moskovsky, I. Kulikov, and I. Chernykh. 2018. Evaluation of Intel 
Memory Drive Technology Performance for Scientific Applications. In: Proceedings of the Workshop on 
Memory Centric High Performance Computing (MCHPC'18). ACM, New York, NY, USA, 14-21. 
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