
Design and Preliminary Evaluation
of OpenACC Compiler for FPGA with
OpenCL and Stream Processing DSL

Yutaka WATANABE 1),
Jinpil LEE 2), Kentaro SANO 2), Taisuke BOKU 1)3), Mitsuhisa SATO 1)2)

1) Graduate School of Systems and Engineering, University of Tsukuba
2) Riken Center for Computational Science
3) Center for Computational Sciences, University of Tsukuba

Outline

 Background
 Programming method for FPGAs
 Overview of the proposed OpenACC compiler
 Evaluation
 Conclusion

Jan 16th, 2020 IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 2

Background
 Increasing the demand of reconfigurable computing

with FPGA
 Better watt performance
 Application specific hardware
 Inter-FPGA direct communication

 FPGA clusters are operated in several institutions.
 Noctua @ Paderborn Univ，Cygnus @ Univ. Tsukuba
 Catapult Project @ Microsoft

 Programming is one of the problem to make FPGA
used widely in HPC
 HLS is still difficult for application developers

Jan 16th, 2020

Cygnus @ CCS, Univ. of Tsukuba

CPU0 CPU1

PL
EX

PL
EX

V
1
0
0

V
1
0
0

IB
H
C
A

IB
H
C
A

V
1
0
0

V
1
0
0

IB
H
C
A

IB
H
C
A

F
P
G
A

F
P
G
A

IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 3

The programming for FPGAs
 HDL (Hardware Description Language)

 Able to specify register-transfer level operation
 Optimal design may not be created unless by FPGA expert
 High cost

 HLS by OpenCL
 Relaxed the complexity of programming with HDL
 Easy to write than HDL, but code generation mechanism is almost hidden

 We need to write codes practically

 Programming with OpenCL for FPGA is completely different from that for GPU

Jan 16th, 2020 IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 4

To use FPGAs used widely in HPC
 Need to make the programming for FPGA easy

 To make easier for application developers
 Need more easier way with performance portability

 Solution: Supporting directive-based programming model
 Such as OpenACC or OpenMP
 Previous reseaches: OpenARC for FPGA, OmpSs@FPGA, etc

Jan 16th, 2020

#pragma acc kernels …
for (i=0; i<SIZE; i++) {

sum += i;
}

IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 5

Motivation

 Directive-based programming model should be supported
even FPGAs
 For end-users/application developers can easily use FPGA
 OpenMP or OpenACC are widely used in HPC

 Can OpenCL be used as an intermediate code in the
directive-based compiler?
 It has good portability, but it is not clear what hardware is

generated with OCL
 It could be better to use more low-level language

Jan 16th, 2020 IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 6

OpenACC -> xxx -> FPGA:
What could be used as xxx?
 There are many languages for FPGA

 HDL
○ : Cycle-level explicit optimization
✗ : Low portability between boards, high dev cost

 OpenCL
○ : High portability
✗ : The code gen mechanism is hidden

 DSL for FPGAs
○ : low-level optimization than HLS
✗ : Portability, higher dev cost than HLS

Jan 16th, 2020

Integration of OpenCL and DSL:
=> Will enable lower level optimization
with DSL in the OpenACC compiler

clock
level

optim
ization

portability

HDL

Open-
CL

DSL

IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 7

SPGen (Stream Processing Generator)

 Example of DSL for FPGAs (and we will use in our compiler)

 A stream processing framework for FPGA
 User writes an SPD program

 Compiler analyze the program into dataflow, and translate into HDL
 User writes formulas, HDL module inclusions, data in/out

 Loop structure or indirect access cannot be described

Name saxpy;

Main_In {Mi::in0, in1, sop, eop};
Main_Out {Mo::out0, sop, eop};

EQU equ0, tmp = 3.1337*in0;
EQU equ1, out0 = tmp + in1;

DRCT (Mo::sop, Mo::eop) = (Mi::sop, Mi::eop);
Jan 16th, 2020 IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 8

SPGen (Cont’d)

 Fluid Simulation with SPGen
 519GFLOPS (SP), 9.67GFLOPS/w with Arria10 FPGA
 (estimation) 6149GFLOPS (SP) could be archived with Stratix10

 C2SPD: a C frontend for SPGen
 An original directive-based compiler for SPGen
 Including optimization like loop transformation with Polly (LLVM)

Sano, Kentaro, and Satoru Yamamoto. ”FPGA-Based Scalable and Power-Efficient Fluid Simulation using Floating-Point DSP
Blocks.” IEEE Transactions on Parallel and Distributed Systems 28, no. 10 (2017): 2823-2837.
Lee, Jinpil, Tomohiro Ueno, Mitsuhisa Sato, and Kentaro Sano. "High-productivity Programming and Optimization Framework
for Stream Processing on FPGA." In Proceedings of the 9th International Symposium on Highly-Efficient Accelerators and
Reconfigurable Technologies, p. 5. ACM, 2018.

Jan 16th, 2020 IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 9

The overview of OpenACC compiler with
OpenCL and DSL

Jan 16th, 2020

#pragma acc kernels …
{

for (int i=0; i<SIZE; i++) {
… // to be SPGen kernel

}
}

createBufferOnFPGA(…);
writeDataToFPGA(…);
enqueueTaskToFPGA(…);
…
if (endTaskOnFPGA()) {

readDataFromFPGA(…);
}

kernel void kern(
global float *a, global float *b

) {
for (int i=0; i<SIZE;i++) {

b[i] = spgen_kern(a[i]]);
}

}

Name spgen_kern
Main_In {a, sop, eop};
Main_Out {b, sop, eop};

…

OpenCL device program SPGen program User writes OpenACC
 Compiler translates into SPGen

and OpenCL

 OpenCL is used for offloading
interface and memory access

OpenCL host programOpenACC program

compiler Calc
pipeline

DDR
read

DDR
write

OCL

OCL

SP-
Gen

IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 10

prototype implementation on omni-compiler

 Implemented by using the omni-compiler by RIKEN and Univ.
Tsukuba
 Extending existing OpenACC to OpenCL transpliration for GPU or PEZY-SC

 Implementations：
 Support single work item model for FPGA

 => OpenACC to naive OpenCL

 SPGen code generation
 Initial implementation of vectorization, reduction
 Optimizations are not implemented yet

Jan 16th, 2020 IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 11

Compilation steps
1. Finding loops in the kernel

2. Vectorization if vector clause is specified

3. Reduction if reduction clause is specified

4. Decoupling the memory access from kernel body

5. Code generation
1. Mem access -> OpenCL device kernel
2. Computation body => SPGen program

Jan 16th, 2020

In the intermediate
expression of the
Omni-compiler

IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 12

Experimental Settings

Jan 16th, 2020

Hardware configuration of PPX
CPU Intel Xeon E5-2660 v4 x 2

Host DRAM DDR4-2400 16GB x 4

FPGA
Board

BittWare A10PL4
(Intel Arria10 GX1150)

PCIe Gen3 x8
FPGA chip 10AX115N3F40E2SG

FPGA DRAM DDR4-2133 4GB x 2

Software configuration of PPX

OS CentOS 7.3 x64

Host Compiler GNU C Compiler 4.8.5

FPGA compiler Intel FPGA SDK for OpenCL
17.1.2.304

A10PL4 P100

NVMe

IB HCA CPU

 PPX (Pre-PACS X) system @ Univ. Tsukuba
 Arria 10 FPGA, a former HPC-use FPGA

 Used kernel3, 9, 12 from the livemore kernels for
 A kernel set to measure the vectorization performance

 Compare two method:
 OpenACC to OpenCL only
 OpenACC to OpenCL + DSL

 Measured execution
time only in FPGA

 Used single floating
precision

IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 13

Evaluation:
kernel3

 Resource Usage:
 w/ SPGen > OpenCL only

 Consumes 2x DSPs

 Performance：
 w/ SPGen > OpenCL only

 Lack optimization for OpenCL only

2020/1/16 IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan
Low

er is better

q = 0.0;
for (k=0 ; k<n ; k++) {

q += z[k]*x[k];
}

Evaluation:
kernel9

 Resource usage：
 w/ SPGen > OpenCL only

 Big difference on DSP, M20K

 Performance：
 Almost same if Vector len <=4
 Memory bound

 Lack of memory optimization
Jan 16th, 2020

Low
er is better

for (i=0 ; i<n ; i++) {
px[i][0] =

dm28*px[i][12] + dm27*px[i][11] +
dm26*px[i][10] + dm25*px[i][9] +
dm24*px[i][8] + dm23*px[i][7] +
dm22*px[i][6] +
c0*(px[i][4] + px[i][5]) + px[i][2];

}

OpenCL VL:8
Couldn’t synthesized
by error

IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 15

Evaluation:
kernel12

 Resource Usage:
 Almost same

 Performance：
 Almost same

Jan 16th, 2020
Low

er is better

for (k=0 ; k<n ; k++) {
x[k] = y[k+1] - y[k];

}

IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 16

Discussion:
Resource requirement
 OpenCL+SPGen consumes more resources

 M20K： SPGen uses M20K to adjust pipeline size
 => could be improved by using shift register instead of M20K

 Redundant code generation in the OpenACC compiler
 => could be improved by better code generation

 DSP ： FMA mode or dot-product mode is not used
 => Improved by better code generation in the OpenACC compiler

Jan 16th, 2020 IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 17

Discussion:
Performance difference
 OpenCL+SPGen method shows lower kernel frequency

 Critical Path seems to be FIFO module for adjusting pipeline size
=> Check if improved by using shift register

 Lack of optimizations in the compiler
=> Check if improved by redaundant code elimination or code optimization

Jan 16th, 2020 IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 18

Related works
 OpenARC for FPGA by ORNL

 Extend OpenACC + original directive
 OpenCL is used as intermediate code for FPGA

 Easier to write than OpenCL directly

 OmpSs@FPGA by BSC
 OpenMP related programming model supporting Xilnix SoC platform FPGA
 HLS C is used for intermediate code. However, user should optimize the target code with HLS

pragma

Jan 16th, 2020

Lee, Seyong, Jungwon Kim, and Jeffrey S. Vetter. "Openacc to fpga: A framework for directive-based high-performance reconfigurable computing." In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 544-554. IEEE, 2016.

Lambert, Jacob, Seyong Lee, Jungwon Kim, Jeffrey S. Vetter, and Allen D. Malony. "Directive-Based, High-Level Programming and Optimizations for High-
Performance Computing with FPGAs." In Proceedings of the 2018 International Conference on Supercomputing, pp. 160-171. ACM, 2018.

Filgueras, Antonio, Eduard Gil, Daniel Jimenez-Gonzalez, Carlos Alvarez, Xavier Martorell, Jan Langer, Juanjo Noguera, and Kees Vissers. "Ompss@ zynq all-
programmable soc ecosystem." In Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays, pp. 137-146. ACM, 2014.

IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 19

Conclusion and future work
 Designed an OpenACC compiler for FPGA with OpenCL and DSL

 DSL will enable lower-level optimization in the OpenACC compiler

 Performance evaluation and comparison with OpenACC to OpenCL-only method
 Lower level code generation helps better pipelining
 Found disadvantage in resource consumption and performance in some case

 Performance may be improved by better code generation or SPGen itself
 Disadvantage in resource consumption and performance in some case
 Think to use OpenCL only if OpenCL can perform well without SPGen

 Future Work
 Better code generation including redundant-code elimination
 Code optimization with loop transformation

Jan 16th, 2020 IXPUG workshop @ HPC Asia 2020, Fukuoka, Japan 20

Design and Preliminary Evaluation
of OpenACC Compiler for FPGA with
OpenCL and Stream Processing DSL

Yutaka WATANABE 1),
Jinpil LEE 2), Kentaro SANO 2), Taisuke BOKU 1)3), Mitsuhisa SATO 1)2)

1) Graduate School of Systems and Engineering, University of Tsukuba
2) Riken Center for Computational Science
3) Center for Computational Sciences, University of Tsukuba

	Design and Preliminary Evaluation�of OpenACC Compiler for FPGA with�OpenCL and Stream Processing DSL
	Outline
	Background
	The programming for FPGAs
	To use FPGAs used widely in HPC
	Motivation
	OpenACC -> xxx -> FPGA:�What could be used as xxx?
	SPGen (Stream Processing Generator)
	SPGen (Cont’d)
	The overview of OpenACC compiler with�OpenCL and DSL
	prototype implementation on omni-compiler
	Compilation steps
	Experimental Settings
	Evaluation:�kernel3
	Evaluation:�kernel9
	Evaluation:�kernel12
	Discussion:�Resource requirement
	Discussion:�Performance difference
	Related works
	Conclusion and future work
	Design and Preliminary Evaluation�of OpenACC Compiler for FPGA with�OpenCL and Stream Processing DSL

