
Characterizing
Performance Benefits
of HBM2 and Streaming
Messages
On Stratix 10 FPGAs

© Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

▪ Part of Molex Datacom & Specialty Solutions BU

▪ 30 years FPGA heritage

▪ Four key segments:
▪ Compute
▪ Network
▪ Storage
▪ Signal Processing

▪ Application enablement and benchmarking

▪ Deliver custom solutions featuring Intel® FPGAs

▪ Investing in OpenCL BSPs and application-level
software/IP to complement HW

Integrated Servers

FPGA Boards

Application
Enablement

Customization

April 2019:
University of Tsukuba
inaugurated the “Cygnus”
supercomputer featuring
Intel Stratix® 10 FPGAs

Cygnus features 64 BittWare
520 FPGA accelerator boards,
programmed using the Intel
OpenCL SDK for FPGAs

Photo: University of
Tsukuba, Japan

Photo: Paderborn University, Kamil Glabica

September 2018:
Paderborn University
inaugurated “Noctua,” an
HPC system by Cray with 256
Intel Dual Xeon CPU Nodes.

Noctua also includes 32 520N
FPGA accelerator boards from
BittWare, specifically to pioneer
adoption of FPGAs in HPC
applications.

• Analyze applications at a system level
• Identify where FPGAs provide value
• Generate paper study to estimate potential

performance improvements
• Port code and optimize
• Benchmark vs. competing solutions
• Optimize source code executing on hardware
• Deliver of full turnkey solution

(cloud/on-premise)
• Make customer self-sufficient

(tools, training)

Application Enablement

6 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

About HBM2 on Stratix 10

7 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

Characterizing the performance benefits of HBM2
 What FPGA applications benefit from increased external

memory bandwidth, but are not suitable for other high
bandwidth devices such as GPUs?

 Possible Answers?
— Problems with unusual data access patterns that break cache

structure of other technologies
— Problems that use unusual data types, e.g. reduced precision,

posits, etc

8 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

MX HBM FPGA Configuration
 HBM provides a 4x performance boost

versus previous technologies
 HBM

— 16 DDR Banks split into 32
ports

— 2 pseudo ports for each bank
— Total bandwidth (-2) 409

GBytes/sec
— No cross bar between HBMs

• Can be created by user
code at the cost of device
resources

— 16 GBytes of data
0

50

100

150

200

250

300

350

400

450

Arria 10 385A Stratix 10 520N Startix 10 520MX

38
86

409

GBytes/Sec

9 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

HBM infrastructure on MX

Stratix MX2100

HBM 0 HBM 1 HBM 2 HBM 3 HBM 4 HBM 5 HBM 6 HBM 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HBM 8 HBM 9 HBM 10 HBM 11 HBM 12 HBM 13 HBM 14 HBM 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

10 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

Achieving highest performance (OpenCL)
 HBM memory interfaces run at 400 MHz for this device

speed grade
— Kernel clock must 400 MHz or greater to achieve maximum

bandwidth
• Hyper-flex pipelining needs to be enabled

 Memory controllers most efficient when burst 16 or more
words

— 1 word is 32 Bytes
— True for all DDR memory interfaces

11 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

Extracting peak performance 2D FFT use
case
 FFT’s are memory bound on standard non HBM device

— Fully pipelined FFT (1024 tap) requires ~ 0.16 Bytes/Flop/Clock
— Theoretical peak flop for MX2100 = 3.17 Tflops
— ~500 GBytes/Sec to saturate all DSP logic

 Perform multiple parallel 1D FFTs
— Stripe input rows across all available HBMs
— 16 parallel 1D FFTs each reading and writing 16 Bytes per clock

cycle to HBM working on their own row of data

12 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

Transpose problem
 Striping memory causes complexities

for the transposition part of a multi-
dimensional FFT

 2D FFT requires transpose of rows to
columns, however columns are
striped across multiple memory ports
with no shared connectivity.

 Solution is to create a sliding window
to move HBM data from rows to
columns

— Sliding windows are very efficient in
FPGAs

1D FFT (HBM 0)
1D FFT (HBM 1)

1D FFT (HBM 15)

1D FFT (HBM 0)
1D FFT (HBM 1)

1D FFT (HBM 15)

Capture 16 output words from each
1D FFT in one of 16 register groups
when at the correct address,
otherwise the register is shifted. After
16 results are captured 16 words are
ready to be written back to the
interleaved HBM memories in a
continuous address pattern.

13 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

Buffer rows 2

Buffer rows 1

Buffer rows 0

HBM burst requirements
 Use local memories to buffer enough data to

enable a burst 16 words
 Requires 4 lots to of 16 outputs generated by the

HBMs to be cached locally
— Requires a double buffer implementation

using local M20K memories
— Transpose output is then 64 complex

numbers or 16 HBM words
 HBM performance is as close to 100% as it can

be
Buffer rows 3

Burst 32 HBM words

14 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

Striped HBM Transpose Performance
 HBM bandwidth 180 Gbytes/Sec ~ 90%

peak
— Only half available bandwidth utilised

in this example, (beta version of
OpenCL BSP)

 FPGA logic used to store enough
intermediate results, prevents transpose
degrading performance.

0

20

40

60

80

100

120

140

160

180

Without burst buffer With burst buffer

110

180

GBytes/Sec

15 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

Conclusion
 HBM memory provides a significant performance boost to

memory limited FPGA designs
 Using HBM memories requires careful consideration of

data access patterns if data is spread across HBMS
 Care needs to be taken to ensure data can be burst in

large enough blocks to hit peak performance
— For applications that are not bandwidth limited, but require access

to the whole address space, this will require users to code
multiplexing across all 32 ports. This is not trivial to do efficiently

16 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

HBM Enabled Applications?
Application Complex Access

Patterns
Bit manipulation or
unusual data types

Multi-dimensional FFT
Compression
Cryptography
Bioinformatics
Finite element stencil

17 © Molex, LLC – All Rights Reserved. Unauthorized Reproduction/Distribution is Prohibited.

Tiziano De Matteis
 Ph.D. and PostDoc at University of Pisa (Italy)
 Currently, PostDoc Researcher in the

Scalable Parallel Computing Lab (ETH, Zurich)

Who Am I?

My principal research interests:
 FPGAs for HPC: tools and libraries for improving HPC programming

productivity;
 Parallel Data Stream Processing;
 Energy Awareness in Parallel Computing;

 Modern FPGA Chips have high-performance serial link network connections;

 Necessary for adoption in data center and super-computers;

 Distributed Memory Programming on Reconfigurable Hardware needed to scale to multi-node.

18

Streaming Message Interface

When FPGAs are deployed in a distributed setting, communication is typically handled either
by going through the host machine or by streaming across fixed device-to-device connections

At SPCL (ETH Zurich) we designed Streaming Messages:
 a distributed memory programming model for FPGAs

that unifies message passing and hardware programming
(i.e., pipelined codes) with HLS;

 an interface (SMI), an HLS communication interface
specification for programming streaming messages in
distributed memory multi-FPGA systems

github.com/spcl/smi

T. De Matteis, J. de Fine Licht, J. Beránek, T. Hoefler. “Streaming Message Interface: High-Performance Distributed Memory Programming on Reconfigurable Hardware”. SC’19

19

Existing communication models: Message Passing

FPGA 0

APP

FPGA 1

APP

FPGA 2

APP

FPGA 3

APP Transpor
t Layer

Transpor
t Layer

Transpor
t Layer

Transpor
t Layer

a
b
c
d

for (int i = 0; i < N; i++)
buffer[i] = compute(data[i]);

SendMessage(buffer, N, my_rank + 2);

With Message Passing, ranks use local buffers to send and receive information from other pairs

Flexible: End-points are specified dynamically

Bad match for HLS programming model:
• relies on bulk transfers;
• (potentially dynamically sized) buffers

required to store messages.

Data is streamed across an inter-FPGA in a pipelined fashion

2
0

Existing communication models: Streaming

FPGA 0

APP

FPGA 1

APP

FPGA 2

APP

FPGA 3

APP

// Channel fixed in the architecture
for (int i = 0; i < N; i++)

stream.Push(compute(data[i]));

d

Communication model fits the HLS programming
model

Inflexible, the user must:
 construct the exact path between end-

points;
 handle all the forwarding logic.

cba

Traditional, buffered messages are replaced with pipeline-friendly transient channels.

21

Our proposal: Streaming Messages

FPGA 0

APP

FPGA 1

APP

FPGA 2

APP

FPGA 3

APP Transpor
t Layer

Transpor
t Layer

Transpor
t Layer

Transpor
t Layer

Channel channel(N, my_rank + 2, 0); // Dynamic
target
for (int i = 0; i < N; i++)

channel.Push(compute(data[i]));

dcba

Combines the best of both worlds:
 Channels are transiently established, as ranks

are specified dynamically
 Data is pushed to the channel during

processing in a pipelined fashion

Key facts:
 Each channel is identified by a port, used to

implements an hardware streaming interface
 All channels can operate in parallel
 Ranks can be programmed either in a SPMD or

MPMD fashion

A communication interface for HLS programs that exposes primitives for both point-to-point and collective communications.

22

Streaming Message Interface

Point-to-Point channels are unidirectional FIFO queues used to send a message between two endpoints:

void Rank0(const int N, /* ...args... */) {
SMI_Channel chs = SMI_Open_send_channel(// Send to

N, SMI_INT, 1, 0, SMI_COMM_WORLD); // rank 1

#pragma ii 1 // Pipelined loop
for (int i = 0; i < N; i++) {
int data = /* create or load interesting data */;
SMI_Push(&chs, &data);

} }

void Rank1(const int N, /* ...args... */) {
SMI_Channel chr = SMI_Open_recv_channel(// Receive from

N, SMI_INT, 0, 0, SMI_COMM_WORLD); // from rank 0
#pragma ii 1 // Pipelined loop
for (int i = 0; i < N; i++) {
int data;
SMI_Pop(&chr, &data);
// ...do something useful with data...

} }

A communication interface for HLS programs that exposes primitives for both point-to-point and collective communications.

23

Streaming Message Interface

Communication is programmed in the same way data
is normally streamed between intra-FPGA modules

Data elements are sent in order
Calls must be pipelined in single clock cycle

Multiple collectives can execute in parallel, provided
that they use separate ports

Collective channels are used to implement collective communications. SMI defines Bcast, Reduce, Scatter and Gather
void App(int N, int root, SMI_Comm comm, /* ... */) {
SMI_BChannel chan = SMI_Open_bcast_channel(

N, SMI_FLOAT, 0, root, comm);
int my_rank = SMI_Comm_rank(comm);
for (int i = 0; i < N; i++) {
int data;
if (my_rank == root)
data = /* create or load interesting data */;

SMI_Bcast(&chan, &data);
// ...do something useful with data...

} }

We implemented a proof-of-concept HLS-based implementation (targeting Intel FPGA)

24

Reference Implementation

Two components:
 interface implements the SMI primitives and packs

messages in network packets
 transport component is in charge of routing data

between endpoints

Data communications move data through physical connections
 Port declared in Open_channel primitives are used to lay down

the hardware

Each FPGA net. connection is managed by a pair of Communication Kernels (CK)
 Each CK has a routing table: If the network topology changes, we rebuild the routing tables not the entire bitstream

Key enabler for SMI have been Intel I/O channels and their support in Bittware BSP

25

Evaluation
Testbed: 8 Bittware 520N boards (Stratix 10), 2D-Torus, each with 4x 40Gbit/s QSFP, PCI-E 8x
Microbenchmarks: bandwidth/latency over different topology/network distances simply by changing the topology file

We wish to thank the Paderborn Center for Parallel Computing (PC2) for granting access, support, maintenance, and upgrades on their Noctua multi-FPGAs system.

SPMD program: spatially tiled 2D stencil (same bitstream for all the ranks)

Stratix 10 brings features
like 100G networking and
16GB of on-package HBM2
memory

100G Links

HBM2 on 520N-MX

OpenCL on FPGAs:

Faster development

Easier development

Similar performance

2.5 months vs. 2 weeks

Performance test from CERN
on Verilog vs. OpenCL

3,400 lines vs. 250 lines

35x vs. 26-30x acceleration

OpenCL is also far easier to learn!

Source: “FPGA Compute Acceleration for High-Throughput Data Processing in High-Energy
Physics Experiments,” Christian Färber, CERN Computing Seminar, Geneva 2017

From the lab…

…to the datacenter

TeraBox™ FPGA Servers
Performance and
Support for the
Enterprise
• Highest-density 1U to 4U
• Pre-integrated with BittWare boards
• Expansion chassis options
• Warranty and support from

top OEM suppliers

Learn More:
BittWare.com/520n-mx

OpenCL and the OpenCL logo are trademarks of Apple Inc.
used by permission by Khronos

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	About HBM2 on Stratix 10
	Characterizing the performance benefits of HBM2
	MX HBM FPGA Configuration
	HBM infrastructure on MX
	Achieving highest performance (OpenCL)
	Extracting peak performance 2D FFT use case
	Transpose problem
	HBM burst requirements
	Striped HBM Transpose Performance
	Conclusion
	HBM Enabled Applications?
	Who Am I?
	Streaming Message Interface
	Existing communication models: Message Passing
	Existing communication models: Streaming
	Our proposal: Streaming Messages
	Streaming Message Interface
	Streaming Message Interface
	Reference Implementation
	Evaluation
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29

