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Some take home messages… 

• AI/ML approaches can interface with rigorous physics-based methods to 
address drug discovery challenges

• Emerging AI/ML approaches impose interesting “co-design” requirements 
for HPC

• on existing supercomputing platforms

• on emerging heterogeneous platforms

• Discovery of novel biological aspects related to SARS-CoV-2

• small molecules that can bind to and inhibit SARS-CoV-2

• insights into how SARS-CoV-2 binds to the ACE2 receptor



Introduction to Covid-
19 and SARS-COV-2

• Observed first in Wuhan (Dec 2019)

• Quickly spread to the province of 

Hubei and then onto the world

• Spreads via close contact or through 

respiratory particles 

• Virus is larger and far more stable than its 

counterparts (SARS and MERS) 

• can live on surfaces for a while

• Need a comprehensive strategy to identify 

small molecules (or other therapeutic 

strategies) to treat infection 

Veronica Falconieri Hays; Source: Lorenzo Casalino, Zied Gaieb and Rommie Amaro, U.C. San 

Diego (spike mode l with gly cos y lations )

https://www.scientificamerican.com/article/a-visual-guide-to-the-sars-cov-2-coronavirus/

Spike protein trimer 

Length 10 nm 

Copies per virion 100

Virion structure

~100 nm diameter

Envelope protein

~20 copies (100 monomers)

Membrane protein

~2000 copies (from SARS-CoV-1)

Nucleoprotein

~1000 copies (from SARS-CoV-1)
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Outline (1)

How do we accelerate 

simulations of complex 

biological phenomena?
Collaboration with Carlos Simmerling (Stony 

Brook University), Rommie Aamaro (UCSD)

Simulations driven by AI depict how the CoV-2 spike protein attaches to the human ACE2 receptor protein 
(Carlos Simmerling, Stony Brook)

Spike protein

ACE2 receptor
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Collaboration between 10 institutions, 30 scientists across the globe! 
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Arvind Ramanathan 
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Single-molecule Forster Resonance Energy Transfer (FRET)
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All-atom molecular dynamics (MD)

Ensemble methods and enhanced sampling methods

Coarse—grained MD and other sampling methods

Continuum methods, Multiscale modeling, Theory
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Statistical Inference: glue information across scales

Å nm – μm 0.1mm - mm

fs - μs μs - ms ms - s

Molecular & 

Macromolecular
Subcellular Cellular

Spatial and 

Temporal  Scales

Standard simulations

Enhanced sampling workflows

AI/ML-driven workflows?
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Event detection
Dimensionality reduction 

and clustering

Quantifying conformational 

transitions

ML and deep learning approaches

Adaptive simulations + 

multi-scaling

Bayesian inference to fit sparse 

experimental observables

Improving force field parameters 

for simulations

AI, probabilistic models, Bayesian inference



Standard simulation approaches face significant data movement and 

parallel analytics challenges 

• In situ analytics

• Reduced data 

movement and other 

overheads

• Online monitoring and 

feedback

Need for interleaving  analy tics  (AI/ML) + Simulations  (HPC)

Job scheduler

Simulation(s)

Data storage (Disks)

Analytics

Visualization
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ig
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• Large simulations generate > O(100 TB) of data

• Humanly impossible to peek into “biologically” interesting events!

• http://deepdrivemd.github.io

• Ma, Lee, et al. PARCO (2019)

• Lee, Ma, et al. Workshop on Deep Learning on Supercomputers, Supercomputing (2019)

Ens emble  Too lkit Workflow

http://deepdrivemd.github.io/


Deep Learning/ Artificial Intelligence

Combining AI with HPC: AI-driven MD simulations -- DeepDriveMD

Track states that are 
sampled more often

Weighted Ensemble MD simulations
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E1 E2 EK

Build physically interpretable 
embeddings

X

continue running 
simulations

Coordinates, contact maps, other features

“Interesting conformations”, population sampled, and 
other features

Learning Everywhere

• Jha & Fox. In Visionary Track”, 15th International Conference eScience (2019), San Diego, California

• Jha & Fox. 15th International Conference eScience (2019), San Diego, California



Deep clustering of protein folding simulations

❑ Convolutional Variational Auto Encoders 
(CVAE) 

❑ Low dimensional representations of states 
from simulation trajectories.

❑ CVAE can transfer learned features to reveal 
novel states across simulations

❑ On folding trajectories:

❑ identify intermediate states in an 
unsupervised manner

❑ Applied across multiple protein systems can 
provide a general way to extract ”reaction 
coordinates”

Bhowmik, D., et al, BMC Bioinformatics (2018). 



DeepDriveMD: DL driven Adaptive Ensembles MD  

H. Ma, et al, ParCO, 2019

H. Ma, et al, Workshop on Deep Learning on Supercomputers, 2019

CANDLE infrastructure
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Collaboration with Shantenu Jha (Rutgers/ Brookhaven) and RADICAL team



DeepDriveMD is at least an order of magnitude better than traditional sampling

DeepDriveMD: Deep-Learning Driven Adaptive Molecular 

Simulations for Protein Folding, Workshop on Deep Learning on 

Supercomputers, SC’19 https://arxiv.org/abs/1909.07817

• Crossover point where DeepDriveMD based sampling is: 
(i) accelerated  (ii) improves over “classical” methods

• O(100) greater sampling efficiency without considering 
time to train (for BBA protein)

• If reference trajectories take O(microsecond) to 
sample a particular state, DeepDriveMD samples 
in O(100 ns)

• For BBA, 98% sampled states are observed within 
10 microseconds! 

• Greater efficiency gains with larger proteins and complex 
dynamics

• Requires multiple and distinct levels of parallelism for 
“balanced” performance

https://arxiv.org/abs/1909.07817






Weighted Ensemble (WE) method

• From Huber and Kim Biophys. Journal (1996)

• Instead of running one long simulation, runs many short simulations (“walkers”) with 
probabilities

• Samples the free energy landscape defined by chosen progress coordinates 🡪 landscape is 
divided into “bins” and user chooses which trajectories to continue based on how they are 
progressing

• Trick is that you miss out on the ‘waiting times’ or the dwell times in energy wells for 
molecular events

• Why use the WE method?
1. No statistical bias is added to the system
2. Can sample both thermodynamic and kinetic properties
3. Continuous, unbiased pathways can be obtained
4. Monitoring evolution and convergence of properties is possible
5. Adjusting bins and other parameters “on-the-fly” is possible

Collaboration with Terra Stzain, Shirle y  Ahn, Antony  Bogetti, Lillian Chong



Weighted Ensemble Simulations

• ~ 600,000 atoms, the largest system by an order of magnitude that has 
been simulated using the WE method

• Initial state: 6VXX (closed)

• Weighted Ensemble Simulation Toolkit with Parallelization and Analysis 
(WESTPA)

• Initial runs on SDSC Comet, NVIDIA P100 GPUs

• Longhorn system at the Texas Advanced Computing Center (TACC)

• AMBER 18 MD engine, GPU optimized pmemd.cuda on 100 NVIDIA V100 
GPUs

Aggregate sampling:  ~200 microseconds actual simulation time

Equivalent of ~ 100s of milliseconds of timescale sampling with WE

~ 100TB of data with compression, w/o solvent (protein only)

Collaboration with Terra Stzain, Shirle y  Ahn, Antony  Bogetti, Lillian Chong



D

Continuous unbiased spike opening

Collaboration with Terra Stzain, Shirle y  Ahn, Antony  Bogetti, Lillian Chong



Protein conformations

MD 

simulation 1MD 

simulation 1MD 

simulation K
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Input Contact Matrix
Reconstructed Contact 

Matrix

Bottleneck N(μ, 

𝜎)

Latent-space 

embedding (𝚽L)

• Bhowmik, Gao, et al. BMC Bioinformatics (2018)

• Romero, Ramanathan, et al. Proc. Natl. Acad. Sci. USA (2019)

Convolutional 

filters De-convolution layers

z

Computational challenges

• Representation of contact maps as sparse matrices 

• Parameters for training – O(1012)→ harder to train



Adversarial autoencoders for efficient analysis

D

Encoder Decoder

Discriminator

Algorithmic innovation:

• Point-cloud representations

• Adversarial autoencoder

• O(104) parameters

Thorsten Kurth, Abe Stern, Alex Brace, Tom Gibbs, 

Anda Trifan, Arvind Ramanathan

prior



Memory performance

Training time/ epoch

DeepDriveMD: Computational Performance
• VAE: larger memory footprint and 

longer training times

• AAE: can scale to much larger protein 

sizes and far more efficient in training 

time

• linear increase in memory utilization

• almost constant cost in training 

time (better scaling)

• Machine learning for protein folding and dynamics. Current Opinion in Structural 

Biology, (2020). 

• Discovering protein conformational flexibility through artificial intelligence-aided 

molecular dynamics. Journal of Physical Chemistry (2019).

• Reinforcement learning based adaptive sampling: Reaping rewards by exploring 

protein conformational landscapes. The Journal of Physical Chemistry B (2018).











• Effective speedup of o(8.3X) sampling efficiency 

• without DeepDriveMD: 0.5 μs

• with DeepDriveMD: 0.06 μs

• Observed 25% more conformations of the knee bending in only 12% 

of the time! 

• Has been scaled to 1024 nodes of Summit for large ensembles

AI-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics Supercomputing ’20, November 16–19, 2020, Virtual

Angle [deg]Angle [deg]

B C

0.00

0.02

0.04

0.06

0.08

0.10

 0  5  10  15  20  25  30  35  40  45  50
0.00

0.02

0.04

0.06

0.08

0.10

 0  5  10  15  20  25  30  35  40  45  50

0.00

0.05

0.10

0.15

0.20

 0  5  10  15  20  25  30  35  40  45  50
0.00

0.05

0.10

0.15

0.20

 0  5  10  15  20  25  30  35  40  45  50
0.00

0.02

0.04

0.06

0.08

0.10

 0  5  10  15  20  25  30  35  40  45  50
0.00

0.02

0.04

0.06

0.08

0.10

 0  5  10  15  20  25  30  35  40  45  50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  5  10  15  20  25  30  35  40  45  50
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  5  10  15  20  25  30  35  40  45  50

Angle [deg]Angle [deg]

F
re

q
u

e
n

c
y

F
re

q
u

e
n

c
y

F
re

q
u

e
n

c
y

F
re

q
u

e
n

c
y

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0.20

0.00

0.05

0.10

0.15

0.10

0.00

0.04

0.06

0.08

0.02

0.10

0.00

0.04

0.06

0.08

0.02

0.30

0.00

0.05

0.10

0.15

0.20

0.25

REP 4-6

REP 1-3

REP 4-6

REP 1-3

REP 4-6

REP 1-3

REP 4-6

REP 1-3

ANKLE

HIP

KNEE

SPIKE 
TILTING

D E

ACE2

KNEE

ANKLE

RBD “UP”

HEAD

STALK

TMD

A

HIP

SPIKE 
TILTING

Figure 5: Flexibi l i ty of the spike bound to the ACE2 receptor. A) Schematic representation of the two-paral lel-membrane

system of the spike-ACE2 complex. (B-E) Distr ibutions of the ank le, knee, hip and spike-ti l t ing angles resulting f rom MD

repl icas 1-3 (darker color) and 4-6 (l ighter color ). Starting points for repl icas 4-6 have been selected using DeepDriveMD.

(7) We establ ish a new high watermark for the atomic-level

simulation of viruses with the simulation of the SARS-CoV-

2 viral envelope, tal lying 305 mil l ion atoms including ex-

pl ici t water molecules, and exhibi ting a strong scal ing on

Summit . The virion has a realistic ERGIC-like membrane, con-

tains 24 fully glycosylated full-length spikes (in both the open and

closed states) and replicates the spatial patterning and density of

viral proteins as determined from cryoelectron tomography exper-

iments [31]. These groundbreaking simulations, just now in the

process of being fully analyzed, set the stage for future work on

SARS-CoV-2 that will be unprecedented in terms of their ability to

more closely mimic realistic biological conditions. This includes,

for example, the ability to explore the interactions of the virus

with multiple receptors on the host cell, or multiple antibodies. It

will allow researchers to explore the correlated dynamics of the

molecular pieceparts on the surface of the virus and the host cell,

and the e ects of curvature on such behavior. It will be used as the

ground-truth in the development of other simulation approaches,

including coarse grained simulation methods, which are under de-

velopment [76]. It will aid in the development of methods related

to the construction of complicated biological membranes [17]. And

the list goes on.

(8) We developed an AI-dr iven work ow as a general izable

f ramework for multiscale simulation. Though we focus here

on advances made relevant to COVID19, the methods and work-

ow established here will be broadly applicable to the multiscale

simulation of molecular systems.
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simulation of viruses with the simulation of the SARS-CoV-

2 viral envelope, tal lying 305 mil l ion atoms including ex-

pl ici t water molecules, and exhibi ting a strong scal ing on

Summit . The virion has a realistic ERGIC-like membrane, con-

tains 24 fully glycosylated full-length spikes (in both the open and

closed states) and replicates the spatial patterning and density of

viral proteins as determined from cryoelectron tomography exper-

iments [31]. These groundbreaking simulations, just now in the

process of being fully analyzed, set the stage for future work on

SARS-CoV-2 that will be unprecedented in terms of their ability to

more closely mimic realistic biological conditions. This includes,

for example, the ability to explore the interactions of the virus

with multiple receptors on the host cell, or multiple antibodies. It

will allow researchers to explore the correlated dynamics of the

molecular pieceparts on the surface of the virus and the host cell,

and the e ects of curvature on such behavior. It will be used as the

ground-truth in the development of other simulation approaches,

including coarse grained simulation methods, which are under de-

velopment [76]. It will aid in the development of methods related

to the construction of complicated biological membranes [17]. And

the list goes on.

(8) We developed an AI-dr iven work ow as a general izable
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Enabling streaming AI/ML with multiscale 
simulations

Protein structures
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Powered by the Cerebras Wafer Scale Engine (WSE):

• 400,000 AI optimized cores

• 18 GB on chip memory—all 1 clock cycle from the cores, 

• 4 Billion parameters for training (FP 16); 16B inference (8int)

• 9 PByte/s memory bandwidth

• 100 Pbit/s fabric bandwidth

System IO: 12 x 100 GbE

System power: 20 kW

Ingests TensorFlow, PyTorch, etc.

Cerebras CS-1: A 15 RU System for
Training & Inference in the Data Center

Courtesy: Cerebras Systems Inc. 



Bringing together heterogenous hardware to 
enable streaming analysis 

Michael Salim, Vishal Subbiah, Alexander Brace, Heng Ma, 

Murali Emani, Anda Trifan, Corey Adams, Thomas Uram, 

Harry Yoo, Andy Hock, Jessica Liu,  Vernkat Vishwanath, 

Arvind Ramanathan



Stream-AI-MD enables at least 2 orders of 
magnitude faster sampling of folded states 



Utilization of hardware resources can vary 
depending on how tasks are scheduled



Outline (2)

How to search billions of 

molecules to find drug 

candidates?



Improving docking and finding better ligands that bind to 
SARS-COV-2 proteome

Multi-stage campaign employed to select 

promising drug candidates:

• Stage-1: High-throughput ensemble 

docking to identify small molecules 

(“hits”)

• Stage-2: AI-driven Molecular 

Dynamics for modeling specific 

binding regions and understanding 

mechanistic changes involving drugs

• Stage-3: Binding Free Energy 

calculations of promising leads and 

(expensive) lead optimization

33
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Aymen Al Saadi, Dario Alfe, Yadu Babuji, Agastya Bhati, Ben Blaiszik, Thomas Brettin, Ryan Chard, Anda Trifan, Alex Brace, Austin Clyde, Ian Foster, Tom Gibbs, 

Kristopher Keipert, Thorsten Kurth, Dieter Kranzlmüller, Hyungro Lee, Heng Ma,  Andre Merzky, Gerald Matthias, Alexander Partin, Junqi Qiu, Ashka Shah, Abraham 

Stern, Li Tan, Mikhail Titov, Aristedis Tsaris, Matteo Turilli1, Huub Van Dam, Shunzhou Wan, David Wifling, Shantenu Jha*, Peter Coveney∗, Rick Stevens*, Arvind 
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Why not dock every available compound?

• S1 → O(15,000) ligands/sec on 6 GPUs ➔ all of Summit will still take ~6.8 – 8 hours to 
compute!! 

• This is on one receptor → 100 receptors is not feasible



The COVID’19 data pipeline: 
Developing machine readable datasets for small molecule libraries

CHEMICAL 
LIBRARY DATABASE

AND MORE

known 
molecules4B

COMPUTING
RESOURCES

CANONICALIZATION COMPUTE FEATURES DEEP LEARNING 
FILTERING

FINGERPRINTING SIMILARITY SEARCH

GENERATE IMAGES CNN FILTERING

Yadu Babuji, Ben Blaiszik, Kyle Chard, Ryan Chard, Ian Foster, Logan Ward, Tom Brettin et al



ML to the rescue! Increased scientific 
throughput for virtual screening 

• Instead of docking or predicting the docking pose, 
predict:

• the docking score: a regression problem 

• whether a molecule will bind to a given 
protein target

• ML problem formulation: how many compounds 
can we find at the top-ranking list given some 
training data?

• still uses the  regression problem

• instead of ranking we provide a bound for 
saying how many compounds we need to 
dock before we get ”true hits” 

• Leverage image-based models (CNNs on image 
with rotation invariant formulations) that are well 
optimized A. Clyde, R. Stevens, Regression Enrichment Surfaces, 

https://arxiv.org/abs/2006.01171

https://github.com/aclyde11/regression_enrichment_surface

https://github.com/aclyde11/regression_enrichment_surface


Computational performance

ORD 6.25M 

ligands against 

32 receptors

Shantenu Jha and team



Our workflow results in better binding 
compounds … 

• From the 1000 compounds were 
ordered for whole-cell assays, ~50 of 
compounds show viral inhibition 
activity

• Several compounds have already been 
processed for X-ray crystallography 
efforts (at Argonne and NSLS-II)

• Synthetic chemistry efforts are being 
driven across labs to either optimize 
compounds



Impacting SARS-CoV-2 Medical Therapeutics
• Scale of operation:

• ~1011  docking calculations using OpenEye and Autodock in ratio 10:1 

• Thousands of DeepDriveMD calculations over multiple platforms (Summit, Lassen, …)

• 5  x 104  Binding Free Energy Calculations across machines  

• 2.5 x 106   node-hours (equal to ~25 days of 100% of Summit)

• Assuming 5-year lifetime of Summit at $500M → $6M cost of computing!

• For S1, we estimate 1.25 x 106 node hours (lower bound)

• Peak Performance: ~4000 nodes for docking studies on Frontera (06 Sep 2020), 

• Robust and Extensible Computational Infrastructure and Capabilities

• Campaign -- 24x7 operation over multiple heterogeneous resources

• AI-methods & Software Systems can be extended to ATOM, and other drug discovery pipelines

• Extending computational infrastructure to NSLS-II covalent inhibitors of cysteine proteases
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