
Leading Application Acceleration

www.inaccel.com™

helps companies speedup
their applications

by providing ready-to-use
accelerators-as-a-service in

the cloud or on-prem

15x Speedup

4x Lower TCO

Zero code changes

2

www.inaccel.com™

Applications and Platforms

• Applications

• Platforms

• Partnerships

Machine learning Financial Analytics Genomics

3

www.inaccel.com™

Open FPGA Data Science

˃ We help Data science/engineers run up to 15x faster their applications without

changing their code

4

www.inaccel.com™

Integration solution for Application Acceleration

5

InAccel Scalable FPGA Resource Manager

Accelerated ML suite

On-premise Cloud

Higher Performance
Up to 16x Speedup compared to
highly optimized libraries

Lower Cost
Up to 4x lower TCO

Zero-code changes
Seamless integration to widely
used frameworks

Easy deployment
Docker-based container for
seamless integration

On-prem or on cloud
Available on cloud and on-prem

www.inaccel.com™

InAccel Coral FPGA Resource Manager

˃ Coral abstracts FPGA resources

(device, memory), enabling fault-tolerant

heterogeneous distributed systems to

easily be built and run effectively.

6

App1

InAccel FPGA Manager

FPGA Cluster

C++/Java socket

App2 App3

RTE/Drivers (Intel)

OpenCL / OPAE

Worlds’ best FPGA Orchestrator:

Program against your FPGAs like it’s

a single pool of accelerators

www.inaccel.com™

Current Framework for FPGAs on the cloud

Limitations without the InAccel Coral

Manager

˃ Currently only one application can talk to

each FPGA accelerator

˃ Every application can talk to a single

FPGA.

˃ Complex device sharing

• From multiple threads/processes

• Even from the same thread

˃ Explicit allocation of the resources

(memory/compute units)

App1

Vendor drivers

Single FPGA

7

www.inaccel.com™

InAccel’s Coral FPGA Manager

Acceleration abstraction layer to virtualize,

manage and monitor the FPGA resources

˃ Management
• Automatic device (re-)configurations and efficient

memory transfers

˃ Fault-tolerance
• Highly-available service on top of a cluster of

FPGAs, each of which may be prone to failures

˃ Scalability
• Automatic scale-up from single devices (e.g. f1.x2) to

multi-FPGA systems (e.g. f1.x4, f1.x16)

App1

InAccel FPGA Manager

FPGA Cluster

C++/Java socket

App2 App3

RTE/Drivers (Intel)

OpenCL / OPAE

8

Documentation: https://docs.inaccel.com/latest/

https://docs.inaccel.com/latest/

www.inaccel.com™

FPGA Manager features

Ease of Use

˃ Write applications quickly in C/C++, Java,

Scala and Python.

InAccel offers all the required high-level

functions that make it easy to build and

accelerate parallel apps. No need to modify

your application to use an unfamiliar parallel

programming language (like OpenCL)

App1

InAccel FPGA Manager

FPGA Cluster

C++/Java socket

App2 App3

RTE/Drivers (Intel)

OpenCL / OPAE

9

www.inaccel.com™

FPGA Manager features

Runs Anywhere

˃ Runs on any FPGA platform (Intel), giving

you the freedom to take full advantage of on-

premises, or public Cloud (Alibaba, Nimbix,

etc.) infrastructure.

On-premise

App1

InAccel FPGA Manager

FPGA Cluster

App2 App3

RTE/Drivers (Intel)

OpenCL / OPAE

10

www.inaccel.com™

FPGA Manager features

Resource Management

˃ Automatic resource configuration and

task scheduling across entire FPGA

clusters in private datacenters or public

cloud environments.

Coral examines the state of the FPGAs and

implements load-balancing policies across

them, efficiently taking care of all the required

device configurations and memory transfers.

Privacy / Isolation

˃ Coral allows the secure sharing of the

hardware resources among different

users and multiple processes or threads.

First class isolation support for accelerator

cores and FPGA memory.

App1

InAccel FPGA Manager

FPGA Cluster

App2 App3

RTE/Drivers (Intel)

OpenCL / OPAE

11

www.inaccel.com™

FPGA Manager use case
Abstracts away FPGA cluster

˃ App1: 2 threads that use LR

Just send LR requests

‒ The FPGA manager send the requests to
FPGAs programmed with LR (no need to
specify which FPGA/kernel)

˃ App2: Uses both LR and KM

Just send LR-KM requests

‒ The FPGA manager send the requests to
FPGAs programmed with LR and KM
kernels

˃ App3: 1 thread uses KM

Just send Km requests

‒ The FPGA manager sends the requested
to FPGAs programmed with KM kernels

InAccel FPGA Manager

FPGA Cluster

RTE/Drivers (Intel)

OpenCL / OPAE

12

Logistic Regression

KMeans clustering

LR

LR

LR

LR

LR

KM

LR

KM

KM

KM

KM

KM

To LR To LR-KM To KM

LR

LR

LR

LR

FPGA1: LR

FPGA3: LR FPGA4: LR-KM

FPGA2: KM

Send sync or

async requests

App3App2
App1

www.inaccel.com™

Pricing model

FPGA Resource manager

˃ Pricing model per node (server)

˃ Each node can have 1 to 8 FPGAs

ML Accelerators

˃ Pricing model per node (server)

13

FPGA Resource

manager

20 nodes or less More than 20 nodes

Monthly $150/node $100/node

Yearly $1,500/node $1000/node

ML Accelerator 20 nodes or less More than 20 nodes

Yearly $10,000/node $8,000/node

www.inaccel.com™

Performance evaluation on Machine Learning

˃ Up to 15x speedup for LR ML

(7.5x overall)

˃ Up to 14x speedup for Kmeans

ML (6.2x overall)

˃ F1.4x

16 cores + 2 FPGAs (InAccel)

˃ R5d.4x

16 cores

14

r5d.4x

f1.4x (InAccel)

0 200 400 600 800 1000 1200 1400

Logistic Regression execution time MNIST
24GB, 100 iter. (secs)

Data preprocessing Data transformation ML training

15x Speedup

r5d.4x

f1.4x (InAccel)

0 500 1000 1500 2000 2500

K-Means clustering exection time
MNIST 24GB, 100 iter. (secs)

Data preprocessing Data transformation ML training

14x Speedup

www.inaccel.com™

Cost reduction

˃ Up to 2.6x lower cost and 15x speedup

˃ F1.4x ($3.3)

16 cores + 2 FPGAs (InAccel)

˃ R5d.4x ($1.15)

16 cores

15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Logistic regression

K-means clustering

Total cost of execution ($)

f1.4x (InAccel) r54.4x

2.6x Lower OpEx

www.inaccel.com™

Current InAccel

$0.00

$50,000.00

$100,000.00

$150,000.00

$200,000.00

$250,000.00

$300,000.00

$350,000.00

Yearly OpEx for 30 nodes ($)

Cost reduction

˃ For a cluster of 60 nodes on aws (24/7 – 1 year):

R5d.4x ($1.15/hour) : $302,220

˃ For a cluster of only 2 f1 nodes on aws (24/7 – 1 year) providing the same

performance:

F1.4x ($3.3/hour) : $57,816
+ 20k license of ML accelerators

Over $200k savings per year

˃ 16x smaller footprint

16

$200k savings

www.inaccel.com™

Personnel cost savings

˃ Reduction on the complexity to program the FPGAs

˃ Over 4x lower LoC (lines of code)

˃ Significant savings in time to run and debug the FPGAs

17

www.inaccel.com™

Integration with Intel FinLib

˃ Original Finlib

Based on LACE framework

‒ Methods/classes for each
accelerator

Distribution on the FPGAs
through partitioning

18

˃ InAccel Finlib with Coral Resource Manager

Universal approach for every accelerator

‒ No need for specific methods for each accelerator

Virtualization of the resources allows multiple
applications/threads to have access to the
resources

Same performance, Zero overhead

Closer to SW methodology, simple function
invoking

www.inaccel.com™

Example on Black&Schole or MonteCarlo

19

Function to send request to InAccel FPGA manager.

Automatically sends the data to the FPGA cluster

3 Lines of Code

Software much closer to the original software-only

int NUM_OPTIONS = 64 * (1 << 15);

inaccel::vector<bs_opt_param_inst> in(NUM_OPTIONS);

inaccel::vector<bs_opt_result_inst> out(in.size());

testGen(in, out);

inaccel::Request request

{"com.intel.finlib.tutorials.BlackScholes"};

request.Arg(in).Arg(out).Arg(NUM_OPTIONS >> 15);

inaccel::Coral::Submit(request);

// Reference

std::vector<bs_opt_param_inst> inRef;

std::vector<bs_opt_result_inst> outRef;

inRef.assign(in.begin(), in.end());

outRef.assign(out.begin(), out.end());

for (size_t i = 0; i < inRef.size(); i++) {

outRef[i].premium = BSRef::BSOpt(

inRef[i].cp,

inRef[i].fwdPrice,

inRef[i].strike,

inRef[i].vol,

inRef[i].r,

inRef[i].t

);

}

Original SW-only code With Coral

www.inaccel.com™

Example on scaling to 2 FPGA using the resource
manager for logistic regression

20

1.86x speedup using 2 FPGAs

simply by changing the config

file

inaccel start --fpga=intel:0,intel:1

You specify how many

FPGAs you want to use

inaccel start --fpga=all

or

www.inaccel.com™

FPGA Manager deployment

Easy to Deploy

˃ Launch a container with InAccel's Docker

image or even deploy it as a daemonset on a

Kubernetes cluster and enjoy acceleration

services at the drop of a hat.

˃ https://hub.docker.com/u/inaccel/

FPGA Manager

• Easy deployment

• Easy scalability

• Easy integration

21

https://hub.docker.com/u/inaccel/
https://hub.docker.com/u/inaccel

www.inaccel.com™

InAccel’s Coral manager integrated with Spark

˃ Integrated solution that allows

Scale Up (1, 2, or 8 FPGAs per node)

Scale Out to multiple nodes (using Spark API)

Seamless integration

Docker-based deployment

22

www.inaccel.com™

Speedup comparison - Scalability

˃ Up to 10x speedup compared to 32 cores based on f1.x2

Cluster of 4 f1 (SW) Cluster of 4 f1 (SW + InAccel)

f1.x2large f1.x2large

ML
Accel

ML
Accel

ML
Accel

ML
Accel

f1.x2large f1.x2large

1

10.2x

4x f1.x2large (32 cores) 4x f1.x2large
(32cores+InAccel)

Speedup on cluster of f1.x2 using
InAccel

23

www.inaccel.com™

Speed up

˃ Up to 12x speedup compared to 64 cores on f1.x16

1.00

12.14

f1.16xlarge (sw) f1.16xlarge (hw)

Speedup of f1.x16 with 8 InAccel
FPGA kernels

f1.x16large (SW)

64 cores

f1.x16large (SW + 8 InAccel cores)

64 cores + 8 FPGAs with InAccel

MLAccel
MLAccel
MLAccel
MLAccel
MLAccel
MLAccel
MLAccel
MLAccel

>>

24

www.inaccel.com™

Speedup comparison

˃ 3x Speedup compared to r4

˃ 2x lower OpEx

1.00

3.18

cluster of 4 r4 cluster of 4 f1.x2

Speedup comparison normalized on cost
for a cluster of 4 nodes ($2/hour/node)

Cluster of 4 r4 (SW) Cluster of 4 f1 (SW + InAccel)

r4 (32 cores each –
128 cores total)

ML
Accel

ML
Accel

ML
Accel

ML
Accel

f1.x2large f1.x2large

>>

25

www.inaccel.com™

InAccel Docker Service

˃ Sustain FPGA driver

compatibility between the host

and the containers

• discover available resources

• mount/isolate visible devices

‒ forget --priviledged

• resolve library dependencies

26

FPGAs
(Intel)

Server

FPGA
RunTime Host OS

InAccel
Container Runtime Docker engine

App App App

InAccel’s Coral
Device Plugin

containers

www.inaccel.com™

Integration with Arrow

˃ Seamless experience for the application

developer writing software using Arrow-

backed dataframes.

˃ Arrow adoptance growth makes our

integration even more profound.

˃ Zero extra overhead to other operations

supported by Arrow - e.g serialization

27

Apache Arrow specifies a standardized language-
independent columnar memory format for flat and
hierarchical data, organized for efficient analytic
operations on modern hardware. The Arrow memory
format supports zero-copy reads for efficient data-access
without serialization overhead. — Apache Software

www.inaccel.com™

Integration with Arrow

˃ Minimize copy overheads to convey data

to the accelerator data plane.

˃ Single DMA operation from host memory

to DDR memory on FPGA.

˃ Shared memory between CPU and

FPGA will reduce the overhead to zero.
˃ (CAPI – CCIX)

28

Apache Arrow specifies a standardized language-
independent columnar memory format for flat and
hierarchical data, organized for efficient analytic
operations on modern hardware. The Arrow memory
format supports zero-copy reads for efficient data-access
without serialization overhead. — Apache Software

www.inaccel.com™

Arrow Integration - Allocation flow

29

˃ Trigger the inaccel Arrow allocator by

supplying metadata on a per-column

basis.

˃ Arrow columns enabled for acceleration

are mapped internally to shared

memory.

˃ Coral - our FPGA manager - accesses

Arrow-backed data with zero-copy.
Apache Arrow specifies a standardized language-
independent columnar memory format for flat and
hierarchical data, organized for efficient analytic
operations on modern hardware. The Arrow memory
format supports zero-copy reads for efficient data-access
without serialization overhead. — Apache Software

www.inaccel.com™

Arrow Integration - Allocation flow

30

˃ Padding is added to page-align and

boost DMA performance

˃ Padding is ignored on serialization

which ensures no extra transfer cost

Apache Arrow specifies a standardized language-
independent columnar memory format for flat and
hierarchical data, organized for efficient analytic
operations on modern hardware. The Arrow memory
format supports zero-copy reads for efficient data-access
without serialization overhead. — Apache Software

www.inaccel.com™

Apache Arrow Summing up

˃ Seamless Arrow integration

˃ Page-aligned

columnar format

˃ Native memory map

˃ Zero-copy operations

31

App1

Coral FPGA

Resource Manager

FPGA Cluster

App2 App3

columnar

format

structure

DRAM

www.inaccel.com™

Example

˃ Example on logistic

regression on top of

FPGA resource

manager

32

https://docs.inaccel.com/latest/manager/examples/

https://docs.inaccel.com/latest/manager/examples/

www.inaccel.com™

InAccel, Inc. Corporate overview

˃ Founded in January 2018

˃ Registered in Delaware, USA

˃ June 2018: Seed Funding ($600,000 from Marathon VC)

˃ Membership:

33

Application Acceleration, seamlessly

www.inaccel.com

info@inaccel.com

USA:

500 Delaware Ave STE 1, #1960

Wilmington, DE 19801

USA

Europe (Design Center):

Formionos 47

Kesariani 116 33

Athens, Greece

http://www.inaccel.com/
mailto:info@inaccel.com

