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Under auspices of IUCRC Program at NSF

= |Industry-University Cooperative Research Centers
* Fostering university, agency, & industry R&D collaborations

= SHREC is both National Research Center (universities)
and Consortium (member organizations)
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Computing Computing
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Heterogeneous Computing’ for Deep Learning

= Deep learning becoming pervasive for mission-critical computing
= Heterogeneous computing” offers unique capabilities to accelerate DNNs?

Perform design-space exploration:
= Of emerging HGC® archs/tools and DNN models

» For acceleration of selected mission-critical apps

Approach Focus on use of FPGAs to accelerate inference stage
of the HGC workflow _ !,
(lntel)

— e | Collaborating partners
Training Tools = Deep Learning Deployment Tools
T . 35%-5_% a NERSC**: HepCNN, CosmoGAN model support
Tl | s ‘ oaaope o CERN openlab: 3D GAN model support
o e “g o e o Dell: SHREC membership support, equipment
Tools osos Ul v W e . . .
7Y — _f“— o Intel: Deep-learning tools; engineering support
Raw Data Inferenced Result
DNN Models from NERSC & CERN Openlab
Stages of HGC workflow = HEP-CNN (
» Data analysis & pre-processing . _—
- Model training CosmoGAN "
u 3D GAN CoEggnlab

= DNN inference
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FPGA Acceleration for DNN Inference <=
: O Experimental platforms L-/

Experimental Setup & Tools

= Dell EMC server: 2x Intel Xeon Gold 6130 CPU

O Intel OpenVINO Toolkit (up to 32 cores, 64 threads)

» Convert mainstream deep learning framework model (TensorFlow, Caffe, etc.)
into unified intermediate representations (IR)

= Inference Engine
» API library for mapping IR onto Intel hardware platforms (CPU, GPU, FPGA, etc.)
* Integrated with Deep Learning Accelerator suite for FPGA acceleration

Trained
Moge Deep Learning Deployment Tools . .
> [0 " e O Deep Learning Accelerator suite (DLA)
?—-(.' mport } . -
el s * OpenCL-based implementation of
% ‘ Datatobe  DNN inferencing hardware architecture
e~ — Analyzed ., source code acquired through NDA
Mot the modet: . | R NI with Intel to be optimized for various
R0 | W N RS applications

Inferenced Result
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Deep Learning Accelerator suite (DLA [1])

Trained
Model

=0

Deep Learning Deployment Tools

I}\ferenced Result

DDR/HBM ",
Stream Buffer
PEs: processing

elements
Activation module
Xbar

Max Pool module

\

LRN: Normalization

\

Data to be
_Analyzed

= OpenCL-based implementation of DNN
inferencing hardware architecture

= Source code acquired through NDA with Intel
to be optimized for various applications
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[1] Abdelfattah, M.S. et al., DLA: Compiler and FPGA Overlay for Neural
Network Inference Acceleratidn. arXiv e-prints arXiv:1807.06434 (Jul 2018)
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Case Study: HEP-CNN Model [2] from

Particle Events from Large
Hadron Collider from CERN

AL

Pre-process particle events data
into image form

»

Model &
train

o nlD’ (et Th ; Inference

o Classifies particle events between
» “ones which can be fully described by standard model physics"
» “ones which contain new physics".

o Developed and trained by NERSC at Lawrence Berkeley Lab using
CNN (Convolutional Neural Network) topology

Old

Physics

New
Physics
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[2] T. Kurth et al. 2017. Deep Learning at 15PF: Supervised and Semi-
supervised Classification for %cientific Data. High Performance
Computing, Networking, Storage and Analysis (SC ’17). 7:1-7:11.
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HEP-CNN: Initial Experimental Results

FPGA vs. CPU performance Implementation
*% K%
Bit FPGA” CPU (1 core/1thread) CPU (32 core/64 thread) FPGA
precision Throughput Throughput Throughput Speedup vs.
1 core CPU
FP16 66.3 images/sec 26.3 images/sec _ 2.52
> Méf’::) Deep Learning Deployment Tools * Arria 10 at 20 nm prOCGSS
§§ = ** Intel Xeon Gold 6130 CPU at 14 nm process

—= Data to be .
; Analyzed - Qpservations:

FPGA performance is unoptimized due to
unsupported average pooling layers by native DLA

Throughput = Although FPGA mode, OpenVINO executes
ven unsupported layer on CPU as a fallback device
CPU (1 core/1 thread) = Thus introduces communication latencies
= CPU (32 cores/64 threads) during data transferring process
663 = Still 2.52x speedup vs. 1-core/l-thread Xeon
[] Gold CPU
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Performance Optimization through DILA Customization

Problem:
= Native DLA architecture does not have FPGA primitive to process

Average Pooling layer rmssssssoooooooooes .
ooR e ot R T
| 1| 1 : :
Y ! ) i i pew S w i
i T |
* > PE0 i PEL PE-N | ybar ]
Avergge fj
~oaling f | Activation -  Xbar -~ »| DDRY/HBM
C_VEC /) !
l xQ_VEC , L U
oo X P_VEC DRAIN_VEC Y Y=~ aux vec
xQ_VEC . | Mg I ™ X Q_VEC
xPVEC -~ Po XxP_VEC
HEP-CNN model structure v
> Add average pooling
System-level architecture of DLA [1]
Solution:

= Customize DLA source code to add Average Pooling FPGA primitive
in Max Pool module

g2 University of | BY
wir 1tt5burgh BRIGHAM YOUNG

AND RESILIENT COMPUTING (SHREC)

Mission-Critical Computing  [1] Abdelfattah, M.S. et al., DLA: Compiler and FPGA Overlay for Neural
NSF CENTER FOR SPACE, HIGH PERFORMANCE,  Network Inference Acceleratiara arXiv e-prints arXiv:1807.06434 (Jul 2018) vigma. . UF



HEP-CNN: Improved Results

FPGA vs. CPU performance Implementation

. * - **  FPGA
Bit FPGA CPU (1 core/1 thread) CPU (32 core/64 thread)
.. Speedup vs.
precision Throughput Throughput Throughput 1 core CPU

FP16 164.9 images/sec 26.3 images/sec _ 6.27

* Arria 10 at 20 nm process
** Intel Xeon Gold 6130 CPU at 14 nm process

Throughput Throughput

2652 | FPGA

= FPGA 8.
CPU [1 coref1 thread) 2458

- TP A 1
CPU (1 core/1 thread) CPU 32 cores/ 64 Lhreads )
1649
B CPU (32 cores, S 64 threads)
(=1
. 263 263

Initial results (2.52X) Improved results (6.27X)

= All processing performed in FPGA
= Improved from 2.52x to 6.27x vs 1-core/l-thread Intel Xeon CPU
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Case Study: CosmoGAN[3] Model from (B

Random
numbers

CosmoGAN

Generated image

"B *ACDM Lambda
2y Cold Dark Matter
model

o Generates ACDM* weak lensing convergence maps for cosmological studies

= Each output image is a measure of the density of the universe observed from a
particular direction

o Developed and trained by NERSC at Lawrence Berkeley Lab using DCGAN
(Deep Convolutional Generative Adversarial Network) topology

0 Objective: study how to improve FPGA acceleration for complex scientific DNNs

Mission-Critical Computing : ; : ; ; W Pi
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[3] M. Mustafa, D. Bard, W. Bhimji, R. Al-Rfou, and Z. Luki¢,.Creating
Virtual Universes Using Generative Adversarial Networks. 2017
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CosmoGAN: Initial Experimental Results

FPGA vs. CPU performance Implementation

Bit FPGA*
precisionz Throughput

FP16 4.7 images/sec

CPU (1 core/ thread™ CPU (32 core/64 thread]™ o~ oh
Throughput Throughput Speedup vs.
roughpu rougnpu 1 core CPU

Throughput

o FPGA
CPU (1 core/1 thread)

M CPU (32 cores/64 threads)

224

156.7

* Arria 10 at 20 nm process
** Intel Xeon Gold 6130 CPU at 14 nm process

Observations:

|dentified two problems which caused FPGA
performance to be extremely poor:
P1: Deconvolutional layers not support in
FPGA mode

P2: Inefficiency of DLA architecture to process
the Normalization and Activation layers

o
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P1: FPGA Primitive to Support Deconvolutional Layer

System-level architecture of DLA
CosmoGAN model structure E:_:;;;Dj
e e ]
/’I Activation —#  Xbar
Deconvolutional layers oRAI. Ve v e It
xP VEC pool || "V | wpvec
o PE-array module
Solution:
= Customize DLA source code to enable deconvolutional
operation in PE-array module
Mission-Critical Computing & F?Eéfﬁffig”ﬁ BYU
AND RESHLENT COMPUTING (SHREC) 14 weit  UF



P2: Inefficient Processing of LRIN* and Activation Layers

CosmoGAN model structure System-level architecture of DLA

con g ——}
- ' 2o ]
== | |
LRN/ l c_vgc{ - ; lAcmum I Ybar ae DDRY/HBM
Normalization xQVEC ] :‘“n,“;x '.

X xP_VEC DfAJN_VfC . b ib)'_VEC

Activation xfjtg l?:ml |i xg:ﬁg

_ o " Activation layer is hardwired in DLA

o CosmOGAN reqUIreS Normallza’[lon to be processed before LRN |ayer
(LRN) before Activation Requiring extra iteration for each
deconvolutional + LRN + Activation
Solution: subgraph

= Currently working with Intel engineering to make DLA architecture
more flexible

e University of BY
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P2: Experiment to Predict CosmoGAN Performance

CosmoGAN model structure = CosmoGAN requires Normalization
N (LRN) before Activation
F R P % = Activation layer is hardwired in DLA
B8 N |§ = to be processed before LRN layer
TS gy e | Requiring extra iteration for each
s deconvolutional + LRN + Activation

subgraph

Current situation:

Normalization = Cannot easily modify DLA architecture
< " to make it more flexible

| Activation [— ® Can easily change the order of
processing (Activation before LRN)

LRN/ |

Hypothesis: By switching the processing order of LRN and

Activation in CosmoGAN:
= |nference results will not be correct
= But the computational complexity is equivalent to original model

g2 University of BY
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Prediction of Optimized CosmoGAN Results

FPGA vs. CPU performance CosmoGAN model

: * 0553 **  FPGA
Bit FPGA CPU (1 core/1 thread) CPU (32 core/64 thread)
.. Speedup vs.
precision Throughput Throughput Throughput 1 core CPU

FP16 67.5 images/sec 22.4 images/sec _ 3.01

* Arria 10 at 20 nm process
** Intel Xeon Gold 6130 CPU at 14 nm process

Throughput Throughput

156.7 1570
o FPGA m FPEA

CPU {1 coref1 thread)

CPU (1 coref1 thread) = CPUF {32 cores/64 threads)
B CPU [32 coresf64 threads)
675
22 4 22.7
a7y
—

Initial results (0.21x) Expected results (3.01x)

= By processing LRN before Activation, requires only single iteration
for each deconvolutional + LRN + Activation subgraph
= Improved from 0.21 x to 3.01x vs 1-core/1-thread Intel Xeon CPU
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Summary &Conclusions
= Heterogeneous computing for deep learning

:,\;T; = Collaboration with NERSC & CERN

e |7 e openlab on scientifically relevant DNNs
Data Analysis & ,_p,_"m_"m ‘_. m--ﬁt;-m ]
e " SHREC: Focused on FPGA-acceleration

p—— of inference stage
= Exploration of FPGA-based platforms & tools

= |ntel PAC10 card; OpenVINO,;
DLA design suite

W
= Explore the use and improvement =
of state-of-art tools s

(on-chip)

C_VEC
X Q_VEC
X P_VEC

uuuuuuuu

Throughput )
FPGA S, CPU |1 core1 thread) Spaecp FPGA S CPU 1 core1 tread) Speedip
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Going Forward

= Continue to explore & improve FPGA-based DNN
platforms & tools

= E.g., Extend DLA's function to support “3D convolutional layer”
for 3D GAN (CERN openlab)

= Scale up to multiple FPGAs for faster inference
= Explore FPGA (+ emerging technologies) for efficient
DNN model training
= Appropriate use of FPGA-based DNN platforms

= Compare FPGA-based platform vs. CPU, GPU, & other
emerging devices (energy, size, weight, cost, etc.)

= Determine appropriate missions for FPGA-based systems
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