
SYCL nuances
not found in
SYCL tutorials or

our SYCL book

James R. Reinders
engineer
Intel

3

Marketing calls it:

“Sneak Preview”

“Hot off the Presses”

FUTURE (under development)

4

 you won’t find in our SYCL book

 you won’t hear mentioned even in a full day SYCL tutorial

 insights into “what we were thinking” or “what we are puzzling about”

DISCLAIMER: This is NOT good presentation for a general audience.

Most developers never need to know these things. We are not ‘most developers.’

Details under the hood are always a little messy.

Everyone has them – we just don’t talk about them.

Possibly insightful, definitely random, collection of things that…
Learn here first

5

 you won’t find in our SYCL book

 you won’t hear mentioned even in a full day SYCL tutorial

 insights into “what we were thinking” or “what we are puzzling about”

DISCLAIMER: This is NOT good presentation for a general audience.
Most developers never need to know these things. We are not ‘most developers.’

Details under the hood are always a little messy.

Everyone has them – we just don’t talk about them.

Possibly insightful, definitely random, collection of things that…

6

 an XPU?

 our shared goals?

 SYCL?

 DPC++?

 an awesome book to read?

Vocabulary level-setting…. What is…

7

XPU ≈ *.* processing units

 a name for a diverse set of architectures

 SYCL calls them devices

 for example:

What is an XPU?

FPGACPU
GPU

DSP ASIC

8

Shared goal: make it so
we can really program XPUs?
1. Freedom: Use any XPU that I choose.

(regardless of XPU type or vendor)

2. Value: Regardless of my XPU choice, I consistently can obtain a
reasonable level of performance.
(regardless of XPU type or vendor)

3. Trust: My coding choices can be made with confidence, and my code
is maintainable.

Note: some XPU-specific coding and tuning is expected and must be well supported!

9

SYCL…
 extends C++ (with templates, a runtime, and libraries)

for heterogeneous programming

 This gives us a portable way to query “what XPUs are present?”
and a way to process work (code and data) on XPUs

 SYCL calls XPUs by the name “devices”

 SYCL fully support our shared goals
(freedom, value, trust)

10https://www.iwocl.org/wp-content/uploads/k04-iwocl-syclcon-2021-wong-slides.pdf

11

Path to Standardization

ISO C++

Khronos SYCL

Direct Programming:
Data Parallel C++

Community Extensions
Most extensions feed into the SYCL specification
(Often with improvements from experience + generalization)

SYCL motivates proposals + participant positions
(Established best practice)

12

Our SYCL Book

 Free in PDF form! (paper version available for purchase)

 www.apress.com/book/9781484255735

 First book on SYCL
 aligned with SYCL 2020

13

Not taught in our SYCL (DPC++) book,
or the ISC SYCL tutorials…

14

Lots of participation makes a better specification

 SYCL 2020 is a huge upgrade to 1.2.1
 Thanks to very broad industry contributions

 Orientation very in tune with share goals for effective XPU usage

 I expect that future SYCL updates will be smaller increments
(think: C++11 *big* followed by smaller increments)

 No complete SYCL 2020 implementations exist today
prototyping did precede the standard – in various compilers

 Future is bright
 active development of public extensions (e.g., invokeSIMD)

15

16

17

SYCL is C++
how much C++ do you need to know?

 Four C++-isms to get used to:
 lambda functions (not required, but preferred, so you’ll see them a lot)

 use of templates

 thankfully – they usually look like function calls with varargs and optional parameters

 I ♥CTAD (class template argument deduction – reduces code verbosity)

 errno vs. throw/catch

 importance of using scope to control lifetimes

 good C hygiene becomes important

18

SYCL is C++
how much C++ do you need to know?

 I don’t think it’s too scary – this is my “Hello, SYCL”…

 from a blog I did – adds 50 to every R,G,B value in an image

queue submit

3D (R,G,B)
using a lambda

increment by 50
(with clamp to give saturation instead of wraparound)

make sure it is done

19

20

What is a SYCL queue?

Chapter 2

“Where
Code
Executes”

21

xPU

Host

Global

Memory
queue

Actions

co
de

single_task
parallel_for

parallel_for_work_group

m
em

or
y copy

update_host
fill

22

device selection

nonchalant
queue();
queue(default_selector_v);

selective
queue(cpu_selector_v);
queue(gpu_selector_v);
queue(accelerator_selector_v);
queue(INTEL::fpga_emulator_selector_v);
queue(INTEL::fpga_selector_v);

full unmitigated control freak
queue(my_custom_device_selector_v);

23

What did we not tell you?

The Rest of the Story

24

xPU

xPU
xPUxPU

xPU

Our application may have many XPUs to select from…

25

xPU

xPU
xPUxPU

xPU

Can we limit an application’s choice before it even runs?

26

Yes… external forces at work: filters

(DPC++ specific example)

SYCL_DEVICE_FILTER
Can limit the SYCL runtime to
only a subset of possible devices.

Affects everything! Specifically:

 platform::get_devices()

 platform::get_platforms())

 all device selectors

https://tinyurl.com/syclfilters
for more on filters and tracing options!

27

Devices

 A device is a software abstraction of some hardware resource.

 The same hardware resource may appear in multiple platforms!
(e.g., each GPU will be exposed via both OpenCL and Level 0)

28

29

 FIFO?

 Priority?

 Run?

What type of queue?

30

 FIFO?

 Priority?

 Run?

Get FIFO with:

property::queue::in_order()

What type of queue?

31

xPU

Host

queue queuequeue

are multiple queues better than
one?

32

xPU

Host

queue queuequeue

are multiple queues better than
one?

Common reasons include:

 Multiple threads

 Multiple in-order queues

33

34

can multiple queues be worse
than one?

xPU

Host

queue queuequeue

35

can multiple queues be worse
than one?

xPU

Host

queue queuequeue

Generally, NO

We do not expect this to
be a problem.

36

can multiple queues be worse
than one?

xPU

Host

queue queuequeue

Generally, NO

We do not expect this to
be a problem. neither of these should be highly visible:

• contexts are not cheap
• the path to a device may do batching

37

optimization guides

https://tinyurl.com/SYCLgpuOPT

optimization
guides may

provide
details on

implementations
for such tuning

38

39

xPU

Host

queue queuequeue

can multiple queues divide up a
device?

40

Implicit vs Explicit Scaling

 Implicit Scaling:
Driver automatically distributes work and allocations across underlying resources

 Explicit Scaling:
Application manually distributes work and allocations across underlying resources

 Same trade-off as for multisocket CPU systems:
 Implicit requires attention to memory placement, work scheduling, etc

 Explicit requires an “extra” level of decomposition

 If you’d normally launch one MPI rank per socket, use explicit scaling!

One device – throw everything at it!

Divide up the device – throw different pieces at each division!

41

Sub-Devices

 A sub-device represents a
collection of execution and memory
resources.

 A sub-device is still a device.
 It can do anything a device can do...

 ...including creating sub-(sub-) devices!

 Sub-devices are a very powerful
abstraction for CPUs and GPUs.

Similarly… GPU can be split up

GPU .1

HBM

L3

EUs
GPU .0

HBM

L3

EUs

Multisocket CPU – think “NUMA”

Socket 1

HBM

L3

Cores

Socket 0

HBM

L3

Cores

Sub-devices created at NUMA boundary.

42

Environmental vs. Programmatic Controls

 Environmental:
Environment modifies definition of “device” and default context.
 e.g. OpenCL Intercept, ZE_AFFINITY_MASK, LIBOMPTARGET_DEVICES
 No code changes required, but error-prone and non-portable

 Programmatic:
Code explicitly sets up sub-devices.
 e.g. sycl::create_sub_devices(),

#pragma omp target device(n) subdevice(0, m)

 Code changes required, but errors are detectable, and behavior is standardized

43

1 MPI Rank →Single Device (Programmatic)
// If there are multiple devices available, select one of them
auto devices = sycl::device::get_devices(sycl::info::device_type::gpu);
sycl::device root = devices[rank % devices.size()];

...

// Attempt to split the device along NUMA boundaries
sycl::device dev;
try {

auto sub_devices = root.create_sub_devices
<sycl::info::partition_property::partition_by_affinity_domain>
(sycl::info::partition_affinity_domain::numa);

dev = sub_devices[rank % sub_devices.size()];
} catch (sycl::exception e) {

dev = root;
}

... // Allocating memory and enqueuing kernels works as before

unnecessarily verbose today

44

1 MPI Rank →Multiple Devices (Many Contexts)
// Each rank will offload to all devices that it can see
auto devices = sycl::device::get_devices(sycl::info::device_type::gpu);
...
// Create a queue associated with each device
std::vector<sycl::queue> queues;
for (auto& dev : devices) {

queues.push_back(sycl::queue(dev));
}
...
// Allocate memory using the context associated with each device
std::vector<float*> as;
for (int d = 0; d < queues.size(); ++d) {

sycl::queue q = queues[d];
as.push_back(sycl::malloc_shared<float>(per_device, q.get_device(), q.get_context()));

}
...
// Execute a kernel on each device
for (int d = 0; d < queues.size(); ++d) {

sycl::queue q = queues[d];
float* a = as[d]; float* b = bs[d]; float* c = cs[d];
q.parallel_for(per_device, [=](sycl::id<1> i) {

c[i] = a[i] + b[i];
});

}

Each device operates on a
private allocation created
against a per-device context.

45

1 MPI Rank →Multiple Sub-Devices (Single Context)
// If there are multiple devices available, select one of them
auto available_devices = sycl::device::get_devices(sycl::info::device_type::gpu);
sycl::device root = devices[rank % devices.size()];
...
// Attempt to split the device along NUMA boundaries
std::vector<sycl::device> sub_devices;
sycl::device dev;
...
// Create a single context associated with the root device and all sub-devices
std::vector<sycl::device> devices{root, sub_devices};
sycl::context ctxt(devices);
...
// Create a queue associated with each device
std::vector<sycl::queue> queues;
for (auto& dev : devices) {
queues.push_back(sycl::queue(ctxt, dev));

}
...
// Allocate memory using the shared context
float* a = sycl::malloc_shared<float>(nelems, root, ctxt);
...
// Execute a kernel on each device
for (int d = 0; d < queues.size(); ++d) {
sycl::queue q = queues[d];
q.parallel_for(per_device, [=](sycl::id<1> i) {
c[offset + i] = a[offset + i] + b[offset + i];

});
}

Each sub-device operates on a private
chunk of the shared allocation.

Allocations are made against the root device
(and are visible to all sub-devices).

46

47

What about multiple applications?

Host

xPU

App

queue

App

queue

48

What about multiple applications?

Host

xPU

App

queue

App

queue

This is what multiple MPI ranks looks like!
Each MPI rank is a process (“App”).

49

50

one to a customer

xPU

Host

queue

xPU

queue

xPU

Host

super queue

xPU

51

an exercise for the viewer?

xPU

write your
own magic

queue

xPU

queue

Host

52

53

SPMD enough?

 beautiful abstraction,
works a very large mount of the time!

 access to SIMD hardware can be left as a non-trivial
mapping job for compilers or hardware mechanisms
(what could go wrong?)

 Good news – we have answers!

54

SPMD: Color inside your lanes

Every operation on a single lane

Efficient and desirable (highly parallel), but the topic of ‘coloring outside our
lanes’ is a recurring question that gets attention.

55

 SPMD models may not take full advantage of SIMD capabilities

We cover “sub-group” in the book, but we leave a lot to the imagination.

The DPC++ project is generalizing sub-group later this year, beyond the
current SYCL specification… to help fulfill more of its vision to allow
coloring outside our lanes.

SPMD vs. SIMD

56

Color inside your lanes anywhere you please

Full SIMD
Whatever we want

Freeing and can be very efficient because
many SIMD operations have hardware support (but not the one shown ) .

57

 SYCL supports…

DAG + pipes

 DAG already needed for control flow (to ensure correctness)

 Pipes were added for FPGAs to avoid the default style of
“write result to memory, then read it back from memory for the next step”

 Is this well developed? NO – a great area for research and development.

What about graphs?

58

59

Single Source is Cool, and with Ripple effects

I’m used to:
$(CPP) –c foo.o foo.cpp

recompiling the entire file.

But now it has code for the host, and code for device(s).

What if I only change the host code?
or just code destined for a single device?

Expect compilers to do interesting things to help,
so we don’t have to solve by breaking up source code!

60

61

Devices belonging to the same context must
be able to access each other’s global
memory using some implementation-specific
mechanism. A given context can only wrap
devices owned by a single platform.

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html#context

62

Contexts & Queues
// Explicitly create a new context from a device or list of devices
sycl::context(const sycl::device& device);
sycl::context(const std::vector<device> &devices);

// Implicitly create a new context (often by mistake)
sycl::queue();
sycl::queue(const DeviceSelector &selector);
sycl::queue(const sycl::device& device);

// Create a queue associated with a specific context
sycl::queue(const sycl::context& ctxt, const DeviceSelector &selector);
sycl::queue(const sycl::context& ctxt, const sycl::device& device);

 OpenMP manages contexts for the user, but they are exposed via interoperability

63

Contexts

 A context is a collection of one or
more (sub-)devices.

 Programs are built per context,
and implementations can
optimize based on the context.

 Allocations are bound to
contexts, not to devices!

64

65

Final SYCL 2020 caused a book errata

SYCL 2020
Appendix D: What has changed from previous versions

66

No such thing as a
‘host device’

67

No such thing as a
‘host device’

68

No such thing as a
‘host device’

xPU

m
em

Host

m
em

69

xPU

Host

Global

Memory
queue

Actions

co
de

single_task
parallel_for

parallel_for_work_grou
p

m
em

or
y copy

update_host
fill

That’s the rest of the story on queues.

70

device selection – the “_v” is new in SYCL 2020

nonchalant
queue();
queue(default_selector_v);

selective
queue(cpu_selector_v);
queue(gpu_selector_v);
queue(accelerator_selector_v);
queue(INTEL::fpga_emulator_selector_v);
queue(INTEL::fpga_selector_v);

full unmitigated control freak
queue(my_custom_device_selector_v);

71

72

xpublog ? 4

If anything was of interest you –
esp. if you want more – drop me a note!
(I want more code examples.)

james.r.reinders@intel.com

(LinkedIn jamesreinders)

I am extremely interested in feedback
regarding ways to convey tips-and-
tricks, techniques, insights, etc. that help
us all be more effective.

	Slide Number 1
	Slide Number 3
	Possibly insightful, definitely random, collection of things that…
	Possibly insightful, definitely random, collection of things that…
	Vocabulary level-setting…. What is…
	What is an XPU?
	Shared goal: make it so�we can really program XPUs?
	SYCL…
	Slide Number 10
	Path to Standardization
	Our SYCL Book
	Not taught in our SYCL (DPC++) book,�or the ISC SYCL tutorials…
	Lots of participation makes a better specification
	Slide Number 15
	Slide Number 16
	SYCL is C++�how much C++ do you need to know?
	SYCL is C++�how much C++ do you need to know?
	Slide Number 19
	What is a SYCL queue?
	Slide Number 21
	device selection
	What did we not tell you?���The Rest of the Story
	Our application may have many XPUs to select from…
	Can we limit an application’s choice before it even runs?
	Yes… external forces at work: filters
	Devices
	Slide Number 28
	What type of queue?
	What type of queue?
	are multiple queues better than one?�
	are multiple queues better than one?�
	Slide Number 33
	can multiple queues be worse than one?
	can multiple queues be worse than one?
	can multiple queues be worse than one?
	Slide Number 37
	Slide Number 38
	can multiple queues divide up a device?
	Implicit vs Explicit Scaling
	Sub-Devices
	Environmental vs. Programmatic Controls
	1 MPI Rank → Single Device (Programmatic)
	1 MPI Rank → Multiple Devices (Many Contexts)
	1 MPI Rank → Multiple Sub-Devices (Single Context)
	Slide Number 46
	What about multiple applications?
	What about multiple applications?
	Slide Number 49
	one to a customer
	an exercise for the viewer?
	Slide Number 52
	SPMD enough?
	SPMD: Color inside your lanes
	SPMD vs. SIMD
	Color inside your lanes anywhere you please
	What about graphs?
	Slide Number 58
	Single Source is Cool, and with Ripple effects
	Slide Number 60
	Devices belonging to the same context must be able to access each other’s global memory using some implementation-specific mechanism. A given context can only wrap devices owned by a single platform. �
	Contexts & Queues
	Contexts
	Slide Number 64
	Final SYCL 2020 caused a book errata
	No such thing as a �‘host device’
	No such thing as a �‘host device’
	No such thing as a �‘host device’
	That’s the rest of the story on queues.
	device selection – the “_v” is new in SYCL 2020
	Slide Number 71
	Slide Number 72
	Slide Number 73

