Modern supercomputers host numerous jobs that compete for shared storage resources, causing I/O interference and performance degradation. Solutions based on software-defined storage (SDS) emerged to address this issue by coordinating the storage environment through the enforcement of QoS policies. However, these often fail to consider the scale of modern HPC infrastructures. In this work, we explore the advantages and shortcomings of state-of-the-art SDS solutions and highlight the scale of current production clusters and their rising trends. Furthermore, we conduct the first experimental study that sheds new insights into the performance and scalability of flat and hierarchical SDS control plane designs. Our results, using the Frontera supercomputer, show that a flat design with a single controller can scale up to 2,500 nodes with an average control cycle latency of 41 ms, while hierarchical designs can handle up to 10,000 nodes with an average latency ranging between 69 and 103 ms.
SC24 IXPUG Workshop
SDS Controllers,Modern HPC Infrastructures,storage,software-defined storage solutions,control plane designs,centralized design,hierarchical design,flat design