
Investigating the performance
of LLVM- based Intel Fortran
Complier (ifx)

Dhani Ruhela

Table of contents

01 04

02 05

03 06

Compilation

What is LLVM

Intel Fortran
Compilers

Benchmarks

Experiments

Conclusions

Compilation

01

Compliers
• A compiler is a software library that converts high-level language code

into a machine executable format.

• Compilers are very language-specific

• C Compilers: icc, icx, gcc, pgcc, xlc, ..

• C++ Compilers : icpc, icpx, g++, xlc++, ..

• Fortran Compilers: ifort, ifx, gfortran, pgfortran, XL Fortran, ..

Compilation Stages

Preprocessing

File Inclusion,

Expand Macro, Conditional Compilation

Assembler (as)

Execution

(Execution) $./hello (Load and Execute)

Compiler (icc, icpc, ifort)

Syntax and Semantics Checking

Translation to Intermediate Representation/Assembly Code

(Compilation) $ ifort hello.f90 -o helloSource Code (.c, .cpp, .f90 .h)

Linker (ld)
Combine Object files and resolves external references

Preprocessed code (.i, .ii)

Assembly Code (.s)

Machine Code (.o, .obj)

Executable (.exe, .elf)

Static Library (.lib, .a)

Why new compilers are needed?

Existing compilers have been stagnated

How ?

• Based on decades old code generation technology

• No modern techniques like cross-file optimization and JIT codegen

• Aging code bases: difficult to learn, hard to change substantially

• Can’t be reused in other applications

• Keep getting slower with every release

Source :
LLVM.org

Low Level Virtual Machine
(LLVM)

An open-source UIUC project that started in 2000 that provides a compiler frontend for
many programming languages and a compiler backend for various instruction set
architectures (x86, PowerPC, ARM,..)

A collection of modular compiler and toolchain technologies

Benefits
- Flexibility: Support many different languages and applications
- Consists of components shared across different compilers
- Reduces build time and cost to construct a particular compiler
- Easy maintenance
- Portability: Support many instruction set architectures
- Optimization and Performance

Low Level Virtual Machine
(LLVM) - Architecture

Intel Fortran Compilers

Two separate Fortran compilers.

ifort - Named “Intel® Fortran Compiler Classic”
• Ifort Intel Fortran parser/analyzer + Intel optimizer/code generation (ILO)
• CPU only classic compiler. NO OFFLOAD TO GPU
• Support up to F2018 language standards

ifx – Named “Intel® Fortran Compiler”
• Ifort Frontend parser/analyzer + LLVM optimizer and code generation (with Intel enhancements)
• Supports OpenMP Offload to Intel GPUs Features!

• No need to call C/C++ or proprietary APIs for GPU acceleration!
• An open, portable Standard to maintain your software investment

• FORTRAN 77, Fortran 90/95, Fortran 2003, Fortran 2008 and Fortran 2018 language standards
• Binary compatible with Codes compiled with DPCPP, ICX, ICC, IFORT compilers

Source : Intel

Research Goals

1. Performance
with threads

How do the performance of
binaries generated by
compilers perform with
increasing OMP threads?

2. Performance in
benchmarks
How does binaries compiled
with Legacy and new Intel
Fortran compiler perform with
SPEC OMP benchmark suite?

How does Intel Compilers
compare with GNU Fortran
Compilers

3. Performance in
architectures
How does the performance of
each Fortran compiler vary
with Intel architecture?

Benchmarks

04

SPEC OMP 2012 Benchmarks

Hardware Setup

Sapphire Rapids : Intel Xeon Scalable 9480 Processor @ 1.9 Ghz (SPR-DDR5) (112 cores, 224 hw threads)

: 251 GB DDR5 Memory

Sapphire Rapids : Intel Xeon Max Processors (HBM) @ 1.9 Ghz (112 cores, 224 hw threads)

: 125 GB HBM Memory, NO DDR optional memory

Cascade Lake : Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz (56 Cores per node, 56 hw threads)

: 192 GB DDR4 Memory

Binaries generated on Native Machines with Flags (Refer paper for details):

IFORT: -O3 -qopenmp -ipo1 -xCORE-AVX512 -qopt-zmm-usage=high -shared-intel

IFX : -O3 -qopenmp -ipo1 -xCORE-AVX512 -mprefer-vector-width=512 -shared-intel -axSAPPHIRERAPIDS

Gfortran : -Ofast -fopenmp -funroll-loops -march=native -mtune=native

Experiments

05

Scalability with OMP Threads

Conclusions :

Most of the benchmarks scale well in performance with increasing OMP threads.
Exceptions :
• 362.fma3d shows overheads at 224 OMP threads
• 363.swim and 370.MGRID331 shows no change in performance at 112 threads.

SPR + DDR5 Architecture SPR + HBM Architecture

SPR + DDR5 (224 threads) SPR + HBM (224 threads) Cascade Lake (56 threads)

Comparing ifort, ifx, Gfortran

Conclusions :
• SPR+DDR5: Ifx perform 13% better than Ifort (bt.331, fma.3d, mggrid.331).
• Gfortran 30% to 7.3 times slower.

SPR + DDR5 (224 threads) SPR + HBM (224 threads) Cascade Lake (56 threads)

Comparing ifort, ifx, Gfortran

Conclusions :
• SPR+DDR5: Ifx perform 13% better than Ifort (bt.331, fma.3d, mggrid.331).
• Gfortran 30% to 7.3 times slower.

• SPR+HBM: Ifx perform 17% better than Ifort (bwaves, ibdc, swim) and 3% slower for (md, fma3d, applu331) due to slightly higher
memory latency of SPR-HBM (130 ns) node vs SPR-DDR5 (110 ns) node.

• Gfortran 1.5 times to 7.6 times slower.

SPR + DDR5 (224 threads) SPR + HBM (224 threads) Cascade Lake (56 threads)

Comparing ifort, ifx, Gfortran

Conclusions :
• SPR+DDR5: Ifx perform 13% better than Ifort (fma.3d, bt.331, mggrid.331).
• Gfortran 30% to 7.3 times slower.

• SPR+HBM: Ifx perform 17% better than Ifort (swim, ibdc, waves) and 3% slower for md, fma3d, applu331due to higher memory
latency of SPR-HBM (130 ns) node vs SPR-DDR5 (110 ns) node.

• Gfortran 1.5 times to 7.6 times slower.

• Cascade Lake: Ifx significantly slower than Ifort (-95%: ibdc -21%:md -9%:fma3d -8%:swim except +9%applu331.
• Gfortran perform much better on Cascade Lake in comparison to Saphire Rapids

(Slowness:3.8%:md, <17%:bt,ibdc,bwaves,swim,mgrid, Fastness:23%applu331,23%fma3d)

Ifort Ifx Gfortran

Finding benefits of HBM Memory

Conclusions :
• General Trend : HBM memory improves performance for majority of applications

• Ifx/Ifort : Most benchmarks run up to 3%-60% faster at nodes with HBM memory compared to nodes with DDR5
memory as the memory bandwidth for nodes with HBM memory is 3.5 times higher for SPR-H nodes.

• Binaries compiled with Gfortran, bt331 and applu331 shows contrary trend.

Conclusions

06

Conclusions
• Experimented the performance of legacy and LLVM-based Fortran compiler on three Intel

architectures and compare it with popular GNU Fortran compiler (gfortran).

• Presented up to 17% improvement by Ifx in running time of SPEC OpenMP 2012 Fortran
applications.

• Presented up to 60% improvement in running time of the benchmarks on Sapphire Rapids with
HBM memory compared to DDR5 memory.

• Indicated the need of tuning LLVM based Ifx compiler on previous Intel architecture.

Thank you for your
time!

	Slide 1: Investigating the performance of LLVM- based Intel Fortran Complier (ifx)
	Slide 2: Table of contents
	Slide 3: Compilation
	Slide 4: Compliers
	Slide 5
	Slide 6: Why new compilers are needed?
	Slide 7: Low Level Virtual Machine (LLVM)
	Slide 8: Low Level Virtual Machine (LLVM) - Architecture
	Slide 9: Intel Fortran Compilers
	Slide 10
	Slide 11: Research Goals
	Slide 12: Benchmarks
	Slide 13: SPEC OMP 2012 Benchmarks
	Slide 14: Hardware Setup
	Slide 15: Experiments
	Slide 16: Scalability with OMP Threads
	Slide 17: Comparing ifort, ifx, Gfortran
	Slide 18: Comparing ifort, ifx, Gfortran
	Slide 19: Comparing ifort, ifx, Gfortran
	Slide 20: Finding benefits of HBM Memory
	Slide 21: Conclusions
	Slide 22: Conclusions
	Slide 23: Thank you for your time!

